
Oracle Rdb™

SQL Reference Manual
Volume 4

Release 7.2.5.2 for HP OpenVMS Industry Standard 64 for Integrity Servers and
OpenVMS Alpha operating systems

April 2012

®

SQL Reference Manual, Volume 4

Release 7.2.5.2 for HP OpenVMS Industry Standard 64 for Integrity Servers and OpenVMS
Alpha operating systems

Copyright © 1987, 2012 Oracle Corporation. All rights reserved.

Primary Author: Rdb Engineering and Documentation group

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except
as expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform,
publish, or display any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted
to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or
anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation
and technical data delivered to U.S. Government customers are "commercial computer
software" or "commercial technical data" pursuant to the applicable Federal Acquisition
Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms
set forth in the applicable Government contract, and, to the extent applicable by the terms
of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway,
Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information
management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications that may create a risk of personal injury. If
you use this software or hardware in dangerous applications, then you shall be responsible
to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by
use of this software or hardware in dangerous applications.

Oracle, Java, Oracle Rdb, Hot Standby, LogMiner for Rdb, Oracle SQL/Services, Oracle
CODASYL DBMS, Oracle RMU, Oracle CDD/Repository, Oracle Trace, and Rdb7 are
registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

This software or hardware and documentation may provide access to or information on
content, products, and services from third parties. Oracle Corporation and its affiliates
are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Contents

Send Us Your Comments . xi

Preface . xiii

8 SQL Statements

HELP Statement . 8–2
IF Control Statement . 8–4
IMPORT Statement . 8–7
INCLUDE Statement . 8–31
INSERT Statement . 8–39
INSERT from FILENAME Statement . 8–54
INTEGRATE Statement . 8–56
ITERATE Control Statement . 8–73
LEAVE Control Statement . 8–75
LOCK TABLE Statement . 8–78
LOOP Control Statement . 8–82
OPEN Statement . 8–85
Operating System Invocation ($) Statement . 8–90
PREPARE Statement . 8–92
PRINT Statement . 8–103
QUIT Statement . 8–105
RELEASE Statement . 8–106
RENAME Statement . 8–110
REPEAT Control Statement . 8–119
RETURN Control Statement . 8–122
REVOKE Statements . 8–124
REVOKE Statement . 8–125
REVOKE Statement: ANSI/ISO-Style . 8–135

iii

REVOKE Statement: Roles . 8–144
ROLLBACK Statement . 8–146
SELECT Statement: General Form . 8–151
SELECT Statement: Singleton Select . 8–164
SET Statement . 8–167
SET ALIAS Statement . 8–189
SET QUERY Statement . 8–192
SET ALL CONSTRAINTS Statement . 8–197
SET ANSI Statement . 8–200
SET AUTOMATIC TRANSLATION Statement . 8–203
SET CATALOG Statement . 8–206
SET CHARACTER LENGTH Statement . 8–211
SET COMPOUND TRANSACTIONS Statement 8–215
SET CONNECT Statement . 8–217
SET Control Statement . 8–221
SET DEFAULT CHARACTER SET Statement . 8–223
SET DEFAULT CONSTRAINT MODE Statement 8–225
SET DEFAULT DATE FORMAT Statement . 8–228
SET DIALECT Statement . 8–231
SET DISPLAY Statement . 8–246
SET DISPLAY CHARACTER SET Statement . 8–253
SET FLAGS Statement . 8–256
SET HOLD CURSORS Statement . 8–289
SET IDENTIFIER CHARACTER SET Statement 8–292
SET KEYWORD RULES Statement . 8–294
SET LITERAL CHARACTER SET Statement . 8–297
SET NAMES Statement . 8–299
SET NATIONAL CHARACTER SET Statement 8–302
SET OPTIMIZATION LEVEL Statement . 8–304
SET QUIET COMMIT Statement . 8–309
SET QUOTING RULES Statement . 8–311
SET SCHEMA Statement . 8–315
SET SESSION AUTHORIZATION Statement . 8–319
SET SQLDA Statement . 8–321
SET TRANSACTION Statement . 8–326
SET VIEW UPDATE RULES Statement . 8–353
SHOW Statement . 8–357

iv

SIGNAL Control Statement . 8–398
Simple Statement . 8–403
START TRANSACTION Statement . 8–405
TRACE Control Statement . 8–410
TRUNCATE TABLE Statement . 8–416
UNDECLARE Variable Statement . 8–419
UPDATE Statement . 8–420
WHENEVER Statement . 8–427
WHILE Control Statement . 8–430

Index

Examples

8–1 Updating the Database File Using Repository Definitions 8–60
8–2 Modifying Repository Definitions Using the INTEGRATE Statement

with the ALTER DICTIONARY Clause . 8–64
8–3 Storing Existing Database File Definitions in the Repository 8–68
8–4 Modifying Repository Field Using the INTEGRATE DOMAIN

Statement with the ALTER DICTIONARY Clause 8–71

Tables

8–1 SQL Statements That Can Be Dynamically Executed 8–97
8–2 Comparison between RENAME and ALTER Statements 8–114
8–3 Supported SQL*Plus SET statements . 8–176
8–4 Logical Names for Internationalization of SET Statements 8–178
8–5 Dialect Settings . 8–232
8–6 Debug Flag Keywords . 8–257
8–7 SQL Share Modes . 8–330
8–8 Comparison of Row Locking for Updates . 8–331
8–9 Phenomena Permitted at Each Isolation Level 8–332
8–10 Effects of Lock Specifications on Multiuser Access 8–336
8–11 Defaults for the SET and DECLARE TRANSACTION

Statements . 8–338
8–12 Phenomena Permitted at Each Isolation Level 8–407

v

Send Us Your Comments

Oracle Rdb for OpenVMS
Oracle SQL Reference Manual, Release 7.2.5.2
Oracle Corporation welcomes your comments and suggestions on the quality
and usefulness of this publication. Your input is an important part of the
information used for revision.

• Did you find any errors?

• Is the information clearly presented?

• Do you need more information? If so, where?

• Are the examples correct? Do you need more examples?

• What features did you like most?

If you find any errors or have any other suggestions for improvement, please
indicate the document title, chapter, section, and page number (if available).
You can send comments to us in the following ways:

• Electronic mail:InfoRdb_US@oracle.com

• FAX — 603-897-3825 Attn: Oracle Rdb

• Postal service:
Oracle Corporation
Oracle Rdb Documentation
One Oracle Drive
Nashua, NH 03062-2804
USA

If you would like a reply, please give your name, address, telephone number,
and (optionally) electronic mail address.

If you have problems with the software, please contact your local Oracle
Support Services.

xi

Preface

This manual describes the syntax and semantics of the statements and
language elements for the SQL (structured query language) interface to the
Oracle Rdb database software.

Intended Audience
To get the most out of this manual, you should be familiar with data processing
procedures, basic database management concepts and terminology, and the
OpenVMS operating system.

Operating System Information
You can find information about the versions of the operating system and
optional software that are compatible with this version of Oracle Rdb in the
Oracle Rdb Installation and Configuration Guide.

For information on the compatibility of other software products with this
version of Oracle Rdb, refer to the Oracle Rdb Release Notes.

Contact your Oracle representative if you have questions about the
compatibility of other software products with this version of Oracle Rdb.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support.
For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

xiii

Structure
This manual is divided into five volumes. Volume 1 contains Chapter 1 through
Chapter 5 and an index. Volume 2 contains Chapter 6 and an index. Volume 3
contains Chapter 7 and an index. Volume 4 contains Chapter 8 and an index.
Volume 5 contains the appendixes and an index.

The index for each volume contains entries for the respective volume only and
does not contain index entries from the other volumes in the set.

The following table shows the contents of the chapters and appendixes in
Volumes 1, 2, 3, 4, and 5 of the Oracle Rdb SQL Reference Manual:

Chapter 1 Introduces SQL (structured query language) and briefly
describes SQL functions. This chapter also describes
conformance to the ANSI standard, how to read syntax
diagrams, executable and nonexecutable statements,
keywords and line terminators, and support for Multivendor
Integration Architecture.

Chapter 2 Describes the language and syntax elements common to
many SQL statements.

Chapter 3 Describes the syntax for the SQL module language and the
SQL module processor command line.

Chapter 4 Describes the syntax of the SQL precompiler command line.

Chapter 5 Describes SQL routines.

Chapter 6
Chapter 7
Chapter 8

Describe in detail the syntax and semantics of the SQL
statements. These chapters include descriptions of data
definition statements, data manipulation statements, and
interactive control commands.

Appendix A Describes the different types of errors encountered in SQL
and where they are documented.

Appendix B Describes the SQL standards to which Oracle Rdb conforms.

Appendix C Describes the SQL Communications Area, the message
vector, and the SQLSTATE error handling mechanism.

Appendix D Describes the SQL Descriptor Areas and how they are used
in dynamic SQL programs.

xiv

Appendix E Summarizes the logical names that SQL recognizes for
special purposes.

Appendix F Summarizes the obsolete SQL features of the current Oracle
Rdb version.

Appendix G Summarizes the SQL functions that have been added to
the Oracle Rdb SQL interface for compatibility with Oracle
Database SQL. This appendix also describes the SQL syntax
for performing an outer join between tables.

Appendix H Describes the Oracle Rdb system tables.

Appendix I Describes information tables that can be used with Oracle
Rdb.

Index Index for each volume.

Related Manuals
For more information on Oracle Rdb, see the other manuals in this
documentation set, especially the following:

• Oracle Rdb Guide to Database Design and Definition

• Oracle Rdb7 Guide to Database Performance and Tuning

• Oracle Rdb Introduction to SQL

• Oracle Rdb Guide to SQL Programming

Conventions
In examples, an implied carriage return occurs at the end of each line, unless
otherwise noted. You must press the Return key at the end of a line of input.

Often in examples the prompts are not shown. Generally, they are shown
where it is important to depict an interactive sequence exactly; otherwise, they
are omitted.

The following conventions are also used in this manual:

.

.

.

Vertical ellipsis points in an example mean that information not directly
related to the example has been omitted.

. . . Horizontal ellipsis points in statements or commands mean that parts
of the statement or command not directly related to the example have
been omitted.

xv

e, f, t Index entries in the printed manual may have a lowercase e, f, or t
following the page number; the e, f, or t is a reference to the example,
figure, or table, respectively, on that page.

boldface
text

Boldface type in text indicates a new term.

< > Angle brackets enclose user-supplied names in syntax diagrams.

[] Brackets enclose optional clauses from which you can choose one or
none.

$ The dollar sign represents the command language prompt. This symbol
indicates that the command language interpreter is ready for input.

References to Products
The Oracle Rdb documentation set to which this manual belongs often refers to
the following Oracle Corporation products by their abbreviated names:

• In this manual, Oracle Rdb refers to Oracle Rdb for OpenVMS. Version 7.2
of Oracle Rdb software is often referred to as V7.2.

• Oracle CDD/Repository software is referred to as the dictionary, the data
dictionary, or the repository.

• Oracle ODBC Driver for Rdb software is referred to as the ODBC driver.

• OpenVMS I64 refers to HP OpenVMS Industry Standard 64 for Integrity
Servers.

• OpenVMS means the OpenVMS I64 and OpenVMS Alpha operating
systems.

xvi

8
SQL Statements

This chapter describes the syntax and semantics of statements in SQL. SQL
statements include data definition statements; data manipulation statements;
statements that control the environment and program flow; and statements
that give information.

See Chapter 2 in Volume 1 for detailed descriptions of the language and syntax
elements referred to by the syntax diagrams in this chapter.

Chapter 6 in Volume 2 describes the statements from ACCEPT to CREATE
SCHEMA. Chapter 7 in Volume 3 describes the statements from CREATE
SEQUENCE to GRANT.

SQL Statements 8–1

HELP Statement

HELP Statement

Gives you access to assistance on all SQL statements, components, and
concepts.

Environment

You can issue the HELP statement only in interactive SQL.

Format

HELP
help-topic

Arguments

topic
The SQL statement or concept on which you need help.

Usage Notes

• When you type HELP:

A menu of topics on which assistance is available replaces the SQL
prompt (SQL>).

After the menu scrolls by, the cursor remains at a ‘‘Topic?’’ prompt.
Typing any of the menu items yields assistance on that topic. Many of
the topics have further levels of assistance, indicated by a ‘‘Subtopic?’’
prompt.

To move back to the next higher level, press the Return key. For
example, pressing the Return key at the ‘‘Subtopic?’’ prompt brings you
to the ‘‘Topic?’’ prompt, and pressing the Return key again returns you
to the SQL prompt.

To see the list of additional topics at any level, type a question mark (?)
and press the Return key.

To leave Help, enter Ctrl/Z or at the ‘‘Topic?’’ prompt, press the Return
key.

8–2 SQL Statements

HELP Statement

• Most Help entries in SQL have a similar structure. The main screen shows
a brief description of the topic and, if you requested help on a statement, a
syntax diagram. In many cases, this screen gives you all the information
you need to execute the statement.

The main screen also displays a list of ‘‘Additional information available.’’
This list usually includes these additional entries:

More: A more detailed description of the topic.

Arguments: Subtopics describing the arguments.

Example

Example 1: Obtaining online Help in SQL

SQL> HELP SELECT

SQL Statements 8–3

IF Control Statement

IF Control Statement

Executes one or more SQL statements conditionally. It then continues
processing by executing any SQL statement that immediately follows the
block.

Environment

You can use the IF control statement in a compound statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

if-statement =

IF predicate THEN compound-use-statement

ELSEIF predicate THEN compound-use-statement

END IF
ELSE compound-use-statement

Arguments

compound-use-statement
See the Compound Statement for a description of the SQL statements that are
valid in a compound statement.

END IF
Marks the end of an IF statement. Every IF statement must end with the
END IF clause.

8–4 SQL Statements

IF Control Statement

ELSE compound-use-statement
Executes one or more SQL statements associated with the ELSE clause but
only when the value of the IF and ELSEIF predicates evaluate to FALSE or
UNKNOWN.

ELSEIF predicate THEN compound-use-statement
If the ELSEIF predicate evaluates to TRUE, SQL executes the SQL statements
in the THEN clause. If the ELSEIF predicate does not evaluate to TRUE, SQL
evaluates the predicates in any subsequent ELSEIF or ELSE clauses.

IF predicate THEN compound-use-statement
Executes one or more SQL statements in an IF . . . END IF block only when
the value of an IF predicate evaluates to TRUE. A predicate, also called a
conditional expression, specifies a condition that SQL evaluates to TRUE,
FALSE, or UNKNOWN. If the predicate evaluates to TRUE, SQL executes the
statement in the THEN clause. If the predicate does not evaluate to TRUE,
SQL evaluates the predicate in any ELSEIF clauses. If the IF statement
contains no ELSEIF clauses, SQL executes any statements in the ELSE clause.

predicate
See Section 2.7 for more information on predicates.

Usage Notes

• As with all compound statements, you can nest IF statements.

• Using the ELSEIF clause instead of a nested IF statement can make your
code easier to read. While both methods produce the same results, using
nested IF statements can obscure logic flow.

• When SQL drops out of the IF . . . END IF block, it then continues
processing by executing any SQL statement that immediately follows the
block.

• The testing of predicates proceeds from the IF clause to each of the ELSEIF
clauses in the order in which they appear. The statements of the first IF
or ELSEIF clause that evaluates to TRUE are executed. The statements
of the ELSE clause are executed if none of these is TRUE. Under no
circumstance is more than one branch of an IF statement executed.

SQL Statements 8–5

IF Control Statement

Examples

Example 1: Using an IF control statement

IF (SELECT COUNT (*) FROM STUDENTS
WHERE CLASS = :CLASS_NUM)

> 30

THEN
SET :MSG = ’Class is too large.’;

ELSE
SET :MSG = ’Class size is O.K.’;

END IF;

8–6 SQL Statements

IMPORT Statement

IMPORT Statement

Creates an Oracle Rdb database from an interchange .rbr file.

You use the IMPORT statement with the EXPORT statement to make changes
to Oracle Rdb databases that cannot be made any other way. The EXPORT
statement unloads a database to an .rbr file. The IMPORT statement re-
creates the database with changes that may not be allowed by an ALTER
DATABASE statement. The IMPORT statement lets you:

• Convert from a single-file to a multifile database, and vice versa.

• Change database root file parameters that you cannot change with the
ALTER DATABASE statement:

COLLATING SEQUENCE

SEGMENTED STRING STORAGE AREA

PROTECTION IS ANSI/ACLS

DEFAULT STORAGE AREA

• Change storage area parameters that you cannot change with the ALTER
DATABASE statement:

PAGE SIZE

PAGE FORMAT

THRESHOLDS

INTERVAL

FILENAME, SNAPSHOT FILENAME

• Reload tables with existing rows to take advantage of newly created hashed
indexes.

• Reload tables to take advantage of new or changed storage maps.

• Move a database to another directory or disk structure. However, if moving
a database is the only change you need to make, it is more efficient to use
the RMU Backup and RMU Restore commands.

• Create an empty target database that uses the same data definitions as a
source database by copying the metadata, but not the data, to the target.

SQL Statements 8–7

IMPORT Statement

If you use the NO DATA option, the IMPORT statement creates an Oracle
Rdb database whose metadata is identical to that found in the source
database used by the EXPORT statement, but the duplicate database
contains no data. The NO DATA option is not compatible with the
repository databases. See the description in the Arguments section under
the NO DATA option.

Environment

You can use the IMPORT statement in interactive SQL only.

Format

IMPORT DATABASE FROM <file-spec>

FILENAME <file-spec>
literal-user-auth

WITH ALIAS <alias>

import-options
character-sets
import-root-file-params-1
import-root-file-params-2
import-root-file-params-3
import-root-file-params-4
storage-area-params-1
storage-area-params-2
create-clause/statement
drop-statement

literal-user-auth =

USER ’<username>’
USING ’<password>’

8–8 SQL Statements

IMPORT Statement

import-options=
ACL

NO BANNER
BATCH UPDATE
CDD LINKS
DATA
FORWARD_REFERENCES
TRACE

COMMIT EVERY TABLE
COMMIT EVERY n ROWS

character-sets =

DEFAULT CHARACTER SET <support-char-set>
NATIONAL CHARACTER SET <support-char-set>
IDENTIFIER CHARACTER SET <names-char-set>
DISPLAY CHARACTER SET <support-char-set>

import-root-file-params-1 =

PATHNAME <path-name>
attach-options
COLLATING SEQUENCE <sequence-name>

COMMENT IS ’<string> ’

<ncs-name>
FROM <library-name>

NUMBER OF USERS <number-users>
NUMBER OF BUFFERS <number-buffers>
NUMBER OF CLUSTER NODES <number-nodes>

(SINGLE INSTANCE)
MULTIPLE

NUMBER OF RECOVERY BUFFERS <number-buffers>
BUFFER SIZE IS <buffer-blocks> BLOCKS
global-buffer-params

SQL Statements 8–9

IMPORT Statement

attach-options =

DBKEY SCOPE IS ATTACH
ROWID TRANSACTION
MULTISCHEMA IS ON

OFF
PRESTARTED TRANSACTIONS ARE ON

OFF
RESTRICTED ACCESS

NO

global-buffer-params=

GLOBAL BUFFERS ARE ENABLED
DISABLED

(NUMBER IS <number-glo-buffers>)
USER LIMIT IS <max-glo-buffers>
PAGE TRANSFER VIA DISK

MEMORY
LARGE MEMORY IS ENABLED

DISABLED
,

import-root-file-params-2 =

SNAPSHOT IS ENABLED IMMEDIATE
DEFERRED

DISABLED
DICTIONARY IS REQUIRED

NOT REQUIRED
ADJUSTABLE LOCK GRANULARITY IS ENABLED alg-options

DISABLED
LOCK TIMEOUT INTERVAL IS <number-seconds> SECONDS
SEGMENTED STRING STORAGE AREA IS <area-name>
LIST
DEFAULT
PROTECTION IS ANSI

ACLS
RESERVE <n> CACHE SLOTS

JOURNALS
STORAGE AREAS
SEQUENCES

8–10 SQL Statements

IMPORT Statement

alg-options =

(COUNT IS <n>)

import-root-file-params-3 =

CARDINALITY COLLECTION IS ENABLED
CARRY OVER LOCKS ARE DISABLED
GALAXY SUPPORT IS
LOCK PARTITIONING IS
LOGMINER SUPPORT IS
METADATA CHANGES ARE
STATISTICS COLLECTION IS
WORKLOAD COLLECTION IS
SYSTEM INDEX COMPRESSION IS ENABLED

DISABLED
(system-index-options)

,
PRESTARTED TRANSACTIONS ARE ENABLED prestart-trans-options

DISABLED
SECURITY CHECKING IS security-checking-options
SYNONYMS ARE ENABLED

system-index-options =

COMPRESSION IS ENABLED
PREFIX CARDINALITY COLLECTION IS DISABLED
PREFIX CARDINALITY COLLECTION IS ENABLED FULL
TYPE IS SORTED

RANKED

prestart-trans-options =

WAIT <n> SECONDS FOR TIMEOUT
WAIT <n> MINUTES FOR TIMEOUT
NO TIMEOUT

SQL Statements 8–11

IMPORT Statement

security-checking-options =

EXTERNAL
(PERSONA SUPPORT IS ENABLED)

DISABLED
INTERNAL

(ACCOUNT CHECK IS ENABLED)
DISABLED

import-root-file-params-4 =

ASYNC BATCH WRITES ARE ENABLED async-bat-wr-options
DISABLED

ASYNC PREFETCH IS
DETECTED

ENABLED async-prefetch-options
DISABLED

ROW CACHE IS ENABLED
DISABLED row-cache-options

INCREMENTAL BACKUP SCAN OPTIMIZATION
NO
MULTITHREAD AREA ADDITIONS multithread-options
RECOVERY JOURNAL (ruj-options)
SHARED MEMORY IS SYSTEM

PROCESS
RESIDENT

asynch-bat-wr-options =

(CLEAN BUFFER COUNT IS <buffer-count> BUFFERS)
MAXIMUM BUFFER COUNT IS <buffer-count> BUFFERS

,

async-prefetch-options =

(DEPTH IS <number-buffers> BUFFERS)
THRESHOLD IS <number-buffers> BUFFERS

,

8–12 SQL Statements

IMPORT Statement

row-cache-options =

(CHECKPOINT ALL ROWS TO BACKING FILE)
TIMED EVERY <n> SECONDS
UPDATED ROWS TO BACKING FILE

DATABASE
LOCATION IS <directory-spec>
NO LOCATION

SWEEP INTERVAL
NUMBER OF SWEEP ROWS IS <n>
SWEEP INTERVAL IS <n> SECONDS

,

multithread-options =

(ALL AREAS)
LIMIT TO <n> AREAS

ruj-options =

LOCATION IS <directory-spec>
NO LOCATION
BUFFER MEMORY IS LOCAL

GLOBAL

storage-area-params-1 =

ALLOCATION IS <number-pages> PAGES
CACHE USING <row-cache-name>
NO ROW CACHE
extent-params
INTERVAL IS <number-data-pages>
LOCKING IS ROW LEVEL

PAGE
PAGE FORMAT IS UNIFORM

MIXED
PAGE SIZE IS <page-blocks> BLOCKS

SQL Statements 8–13

IMPORT Statement

extent-params =

EXTENT IS ENABLED
DISABLED
<extent-pages> PAGES
(extension-options)

extension-options =

MINIMUM OF <min-pages> PAGES,

MAXIMUM OF <max-pages> PAGES,

PERCENT GROWTH IS <growth>

storage-area-params-2 =

CHECKSUM CALCULATION IS ENABLED
SNAPSHOT CHECKSUM CALCULATION IS DISABLED
SNAPSHOT ALLOCATION IS <snp-pages> PAGES
SNAPSHOT EXTENT IS <extent-pages> PAGES

(extension-options)
SNAPSHOT FILENAME <file-spec>
THRESHOLDS ARE (<val1>)

,<val2>
,<val3>

create-clause/statement =

create-cache-clause
create-index-statement
create-storage-area-clause
create-storage-map-statement

drop-statement =

DROP CACHE <row-cache-name>
DROP INDEX <index-name>
DROP STORAGE AREA <area-name>
DROP STORAGE MAP <map-name>

8–14 SQL Statements

IMPORT Statement

Arguments

ACL
NO ACL
Specifies that the IMPORT statement uses the access control lists from the
original database when it creates the new database. The ACL option is the
default. If you are using the IMPORT statement to restructure a database, you
typically want to use the ACL option and preserve the access control lists.

The NO ACL option overrides the ACLs from the original database and uses
the database system default ACLs. Specify NO ACL if you are using the
IMPORT statement to rebuild a database on a different system. The NO ACL
option makes you the owner of the new database and creates default access
control lists.

BANNER
NO BANNER
This clause requests that IMPORT display informational messages during the
import of the database header, such as product identification, and values for
some database parameters. The default is NO BANNER which will mean most
IMPORT statements generate no output.

BATCH UPDATE
NO BATCH UPDATE
Specifies whether the IMPORT statement stores user data and indexes using
batch-update transactions (BATCH UPDATE) or read/write transactions for
each table (NO BATCH UPDATE). The NO BATCH UPDATE option is the
default.

A batch-update transaction is faster but does not perform recovery-unit
journaling, which means you cannot recover the database in the event of a
failure during the IMPORT operation. With the NO BATCH UPDATE option,
you can recover the database.

For more information about batch-update transactions, see the SET
TRANSACTION Statement.

CDD LINKS
NO CDD LINKS
Determines whether the IMPORT statement tries to reestablish links between
database definitions originally based on repository definitions (domains and
tables created with the FROM path name clause) and their sources in the
repository.

SQL Statements 8–15

IMPORT Statement

The default depends on whether or not the IMPORT statement specifies the
PATHNAME option. If the IMPORT statement does specify PATHNAME, the
default is CDD LINKS; if it does not specify PATHNAME, the default is NO
CDD LINKS.

The CDD LINKS option specifies that the IMPORT statement tries to
reestablish repository links even if you do not specify the PATHNAME option.
If you specify CDD LINKS and the database repository definition on which a
database definition was based does not exist, the IMPORT statement generates
a warning message.

The NO CDD LINKS option specifies that the IMPORT statement does not
establish data repository links even if you specify the PATHNAME option.
Specify NO CDD LINKS if you are using the IMPORT statement to rebuild a
database on a different system.

COMMIT EVERY TABLE
COMMIT EVERY n ROWS
Specifies whether the IMPORT statement commits entire tables, or commits a
certain number of rows at regular intervals. If you use the COMMIT EVERY n
ROWS clause, you can supply a value from 1 to 2147483647 for n.

The default is COMMIT EVERY TABLE. If you use the COMMIT EVERY n
ROWS clause, the table will be left with a partial set of rows if the IMPORT
process fails.

Note

If the table being imported includes a storage map with the
PLACEMENT VIA INDEX clause, then the COMMIT EVERY clause is
ignored for that table. A message is displayed to inform the database
administrator of the tables that did not have COMMIT EVERY applied.
This condition is shown in Example 6.

create-cache-clause
See the CREATE CACHE Clause for a complete description.

create-index-statement
See the CREATE INDEX Statement for a complete description.

create-storage-area-clause
See the CREATE STORAGE AREA Clause for a complete description.

8–16 SQL Statements

IMPORT Statement

create-storage-map-statement
See the CREATE STORAGE MAP Statement for a complete description.

DATA
NO DATA
Specifies whether the database created by the IMPORT statement includes the
data and metadata contained in the source database, or the metadata only.
DATA is the default.

When you specify the NO DATA option, you import the metadata that defines
a database from an .rbr file and exclude the data. Duplicating the metadata of
a database while excluding the data offers the following benefits:

• You can use established, tested metadata to create a database to store new
data. Standardized metadata can be created once but used in multiple
databases.

• You can use the duplicated metadata to test the database structure. You
can experiment with storage areas and storage maps, and by entering
sample data, you can test other aspects of database structure.

• If a database needs testing by someone outside of your group, you can
submit the database metadata without exposing any sensitive data. Also,
if the database is very large, you need not submit multiple reels of tape to
the tester.

Note

The NO DATA option is not compatible with repository databases
(CDD$DATABASE.RDB). An .rbr file, created by an EXPORT
statement with the DATA option (the default) and generated from
a CDD$DATABASE.RDB file, cannot be used with the NO DATA option
for the IMPORT statement. SQL issues an error message stating that
the NO DATA option is not valid for repository databases.

DROP CACHE row-cache-name
Prevents the specified row area from being imported.

DROP INDEX index-name
Prevents the specified index from being imported.

DROP STORAGE AREA area-name
Prevents the specified storage area from being imported.

SQL Statements 8–17

IMPORT Statement

DROP STORAGE MAP map-name
Prevents the specified storage map from being imported.

FILENAME file-spec
Specifies the file associated with the database.

If you omit the FILENAME argument, the file specification takes the following
defaults:

• Device: the current device for the process

• Directory: the current directory for the process

• File name: the alias (if you omit the FILENAME argument, you must
specify the WITH ALIAS clause)

Use either a full file specification or a partial file specification. You can use a
logical name for all or part of a file specification.

If you use a simple file name, SQL creates the database in the current default
directory. Because the IMPORT statement may create more than one file
with different file extensions, do not specify a file extension with the file
specification.

FORWARD_REFERENCES
NOFORWARD_REFERENCES
The EXPORT interchange file contains declarations of all routines that will
be referenced by other definitions. The default is to declare the interfaces to
those routines prior to creating domains, tables, views, triggers, functions,
procedures and modules that may need them. The default is FORWARD_
REFERENCES.

Use NO FORWARD_REFERENCES to disable these declarations. However,
this may result in definition failures during the IMPORT.

If you include the FORWARD_REFERENCES option on the IMPORT command
line then informational messages will be generated for each declared routine.

FROM file-spec
Names the interchange .rbr file that the IMPORT statement uses as a source
to create a new database.

import-root-file-params-1
import-root-file-params-2
import-root-file-params-3

8–18 SQL Statements

IMPORT Statement

import-root-file-params-4
Parameters that control the characteristics of the database root file associated
with the database, or characteristics stored in the database root file that apply
to the entire database.

For more information on other "import-root-file-params-1", "import-root-file-
params-2", "import-root-file-params-3", and "import-root-file-params-4", see
the descriptions of "root-file-params-1", "root-file-params-2", "root-file-params-
3", and "root-file-params-4" in the CREATE DATABASE Statement.

limit-to-clause
See Section 2.8.1 for information about the LIMIT TO clause.

literal-user-auth
Specifies the user name and password for access to databases, particularly
remote databases.

This literal lets you explicitly provide user name and password information in
the IMPORT statement.

order-by-clause
See Section 2.8.1 for information about the ORDER BY clause.

PROTECTION IS ANSI
PROTECTION IS ACLS
By default, the IMPORT statement retains the protection style of the database
that was exported. However, if you specify PROTECTION IS ANSI or
PROTECTION IS ACLS, then the IMPORT statement creates a database
with that protection type. If the protection of the database created is different
from the protection of the database that was exported, then no protection
records are imported and you will receive default protections.

select-clause
See Section 2.8.1 for information about the SELECT clause.

storage-area-params1
storage-area-params2
Specifies parameters that control the characteristics of database storage area
files. You can specify most storage area parameters for either single-file or
multifile databases, but the effect of the clauses differs.

• For single-file databases, the storage area parameters specify the
characteristics for the single storage area in the database.

SQL Statements 8–19

IMPORT Statement

• For multifile databases, the storage area parameters specify a set of default
values for any storage areas created by the IMPORT statement that do
not specify their own values for the same parameters. The attributes of a
storage area are supplied by the interchange file unless redefined by the
IMPORT statement. The default values apply to the storage area named in
CREATE STORAGE AREA database elements.

For details about storage area parameters, see the CREATE STORAGE
AREA Clause.

Note

The CREATE STORAGE AREA clauses can override these default
values. The default values do not apply to any storage areas created
later with the ALTER DATABASE statement.

TRACE
NO TRACE
Specifies whether usage statistics are logged by the IMPORT statement. The
NO TRACE option is the default.

Some actions taken by the IMPORT statement can consume significant
amounts of I/O resources and CPU time. These actions include the following
operations:

• Loading data

• Defining indexes

• Defining constraints

When you specify the TRACE option with the IMPORT statement, SQL writes
a message when each operation begins, and writes a summary of DIO (direct
input/output operations), CPU, and PAGE FAULT statistics when the operation
completes. When the IMPORT statement finishes execution, a summary of all
DIO, CPU, and PAGE FAULT statistics is displayed. The display also includes
information on access to the .rbr file, database creation, and loading of data.
For more information about these statistics, see the Oracle Rdb7 Guide to
Database Performance and Tuning.

USER ’username’
Defines a character string literal that specifies the operating system user name
that the database system uses for privilege checking.

8–20 SQL Statements

IMPORT Statement

USING ’password’
Defines a character string literal that specifies the user’s password for the user
name specified in the USER clause.

WITH ALIAS alias
Specifies the alias for the implicit database attach executed by the IMPORT
statement. An alias is a name for a particular attachment to a database.

You must specify an alias or a file name. If you omit the WITH ALIAS
clause, the default alias for the database created by the IMPORT statement
is RDB$DBHANDLE. If you omit the FILENAME argument, the IMPORT
statement also uses the alias as the file name for the database root file and
creates the root file in the current default directory. If you omit WITH ALIAS,
you must specify the FILENAME argument.

Usage Notes

• IMPORT executes two phases when importing a database:

1. Create the database using the definitions saved in the interchange
(.rbr) file, unless they were replaced or dropped by the IMPORT
statement.

2. Create all the metadata:

The database access control and security information

All synonyms used in the database

All roles, users, and profiles

All catalog information for a multischema database

All schema information for a multischema database

The LIST STORAGE MAP

All sequences

All collating sequences

All forward references to routines

All domain definitions

All external routines

All tables

SQL Statements 8–21

IMPORT Statement

For each table the following actions are performed:

* If a PLACEMENT VIA INDEX is defined, it will be created

* Create the storage map

* Import data for the current table if required

* Create all indexes for the current table

All view definitions

All constraint definitions

All trigger definitions

All stored modules

All outlines

The import process commits frequently to preserve any successfully
executed definitions. A commit is performed after table load and each
index creation to limit the size of the recovery unit journal (.ruj). Define
the logical name RDMS$SET_FLAGS to the value "TRANSACTION" to
see the transaction activity during the import process.

• If you wish to restructure an existing database with the EXPORT and
IMPORT statements and keep database system files in the same directory,
the Oracle recommends the following sequence:

1. RMU Backup

Preserve a copy of the original database in case of failure of the
IMPORT command.

2. EXPORT

Save the database metadata and table data for subsequent IMPORT.
Make sure that sufficient space exists for this export (rbr) file.

3. DROP DATABASE

If you do not delete the database, the IMPORT statement fails because
the database storage areas files already exist.

4. IMPORT

Using the saved file rebuild the database, adding any changed database
parameters, storage areas and index definitions in the IMPORT
command. Note that after image journal file from the original database
can not be applied to this totally new database.

5. 5. RMU Backup the new database

8–22 SQL Statements

IMPORT Statement

Preserve a copy of the new database for use with RMU/RESTORE and
RMU/RECOVER.

• When importing the CDD$COMPATIBILITY repository, use the
DICTIONARY IS NOT USED clause to prevent SQL from attempting
to use the repository.

• The CREATE STORAGE AREA, CREATE STORAGE MAP, and CREATE
INDEX statements within an IMPORT statement can refer to storage
areas, storage maps, and indexes that existed in the original database.
When they refer to existing elements, the IMPORT statement replaces
those elements of the same name using the characteristics specified in the
CREATE statements (or the database system defaults for characteristics
not specified in the CREATE statements).

• The IMPORT statement creates a new database that inherits the
characteristics of the database that was the source for the .rbr file used by
the IMPORT statement. Only the elements you create will differ from the
original database.

• If you do not specify a page size when creating a storage area with the
IMPORT statement, the page size is inherited from RDB$SYSTEM.

• To move the database root file, storage areas, and snapshot files to different
disks, use the RMU Move_Area command. To move database files to
another system, use the RMU Backup and RMU Restore commands. For
more information about Oracle RMU commands, see the Oracle RMU
Reference Manual.

• You can use the IMPORT statement to convert to a multifile database from
a single-file database by specifying any CREATE STORAGE AREA clause
within the IMPORT statement.

• You can use the IMPORT statement to convert to a single-file database
from a multifile database. Use the following steps:

1. Specify the DROP STORAGE AREA clause for every area in the
database, including RDB$SYSTEM. This prevents IMPORT from using
the information in the interchange file (.rbr) to define storage areas.

You can use the command RMU Dump Export command with the
Nodata qualifier to extract the metadata in the import interchange file
to see the names of the storage areas in the database.

2. Specify the DROP STORAGE MAP clause for every table that contains
a storage map.

SQL Statements 8–23

IMPORT Statement

Alternately, you could map all tables to the default storage area by
specifying the CREATE STORAGE MAP . . . STORE IN RDB$SYSTEM
clause.

3. Specify the DROP INDEX or CREATE INDEX clauses to remove
or replace the indexes that are mapped to areas other than
RDB$SYSTEM.

4. Specify the DROP STORAGE MAP clause for the LISTS (segmented
string) storage map.

5. Define the default for LISTS STORAGE AREA to be RDB$SYSTEM.

6. Define the DEFAULT STORAGE AREA to be RDB$SYSTEM.

• The RESTRICTED ACCESS clause of the IMPORT statement ensures that
other users cannot attach to the database before the IMPORT operation is
complete. By default, Oracle Rdb uses the RESTRICTED ACCESS clause
on the IMPORT statement.

• See the Oracle Rdb Guide to Database Maintenance for a complete
discussion of when to use the IMPORT, EXPORT, and ALTER DATABASE
statements.

• The IMPORT statement is compatible with succeeding versions of Oracle
Rdb. For example, you can import a database using a higher version of
Oracle Rdb than the version used to create the database you are importing.
You cannot import a database using a lower version of Oracle Rdb.

• If you have created a database specifying the SYSTEM INDEX
COMPRESSION clause, you can change the compression mode during
an import operation. For example, if you created a database specifying
the SYSTEM INDEX (COMPRESSION IS DISABLED), you can specify
SYSTEM INDEX (COMPRESSION IS ENABLED) during an import
operation.

• Oracle Rdb does not recalculate the asynchronous prefetch DEPTH
BUFFERS, the asynchronous batch write CLEAN BUFFER COUNT, or the
asynchronous batch write MAXIMUM BUFFER COUNT when you import
a database, even if you specify a value for the NUMBER OF BUFFER
clause. Oracle Rdb uses the values from the export operation, unless you
specify values for each clause.

• Oracle Rdb recommends that you specify the UNIFORM page format for
improved performance when specifying a default storage area.

• You cannot delete a storage area that has been established as the database
default storage area.

8–24 SQL Statements

IMPORT Statement

• You cannot enable after-image journaling or add after-image journal files
with the IMPORT statement. You must use the ALTER DATABASE
statement to enable after-image journaling or add after-image journal files.

• After-image journal attributes cannot be imported and are disabled after
IMPORT completes. Therefore, fast commit is also disabled.

Prior to executing the EXPORT statement, use the RMU Extract
Item=Alter_Database command to generate a script of the after-image
journal definition. Once the database has been exported and imported,
run the script against the imported database to re-create the original
after-image journal attributes. See the Oracle RMU Reference Manual for
more information on the RMU Extract command.

• A node specification may only be specified for the root FILENAME clause
of the IMPORT DATABASE statement.

This means that the directory or file specification specified with the
following clauses can only be a device, directory, file name, and file type:

LOCATION clause of the ROW CACHE IS ENABLED, RECOVERY
JOURNAL, ADD CACHE, and CREATE CACHE clauses

SNAPSHOT FILENAME clause

FILENAME and SNAPSHOT FILENAME clauses of the CREATE
STORAGE AREA clause

• If the interchange file is being used by a previous version of Oracle Rdb,
the NOFORWARD_REFERENCES clause should be used on EXPORT
to prevent the dependency information being exported. In addition,
the dependency information in the interchange file can be ignored by
Oracle Rdb Release 7.1.0.4 and later versions using the NOFORWARD_
REFERENCES clause of the IMPORT DATABASE statement.

Examples

Example 1: Converting to a multifile database

This example uses the EXPORT and IMPORT statements to convert the online
sample database, personnel, to a multifile database.

SQL Statements 8–25

IMPORT Statement

SQL> export database
cont> filename PERSONNEL
cont> into PERS;
SQL>
SQL> import database
cont> from PERS
cont> filename MF_PERSONNEL
cont> default storage area MFP0
cont> create storage area MFP0
cont> filename MFP0_DEFAULT
cont> page format is UNIFORM
cont> create storage area MFP1
cont> filename MFP1
cont> create storage area MFP2
cont> filename MFP2
cont> create storage map EMPLOYEES_MAP
cont> for EMPLOYEES
cont> store randomly across (MFP1, MFP2);
SQL>
SQL> show storage area;
Storage Areas in database with filename MF_PERSONNEL

MFP0 Default storage area
MFP1
MFP2
RDB$SYSTEM List storage area.

Note that the storage area RDB$SYSTEM was created implicitly in this
example. The database administrator could add a CREATE STORAGE AREA
RDB$SYSTEM clause to this IMPORT example so that the name, location and
space allocation for the RDB$SYSTEM area can be controlled.

Example 2: Importing a database created with ANSI/ISO-style privileges

This example imports a database originally created using ACLS style
protection to create a new database with ANSI style protections.

8–26 SQL Statements

IMPORT Statement

SQL> import database
cont> from PERS
cont> alias NEW_PERS
cont> filename MF_PERSONNEL
cont> protection is ANSI
cont> ;
SQL> show protection on database NEW_PERS;
Protection on Alias NEW_PERS
[DEV,SMITH]:
With Grant Option: SELECT,INSERT,UPDATE,DELETE,SHOW,CREATE,ALTER,DROP,

DBCTRL,OPERATOR,DBADM,SECURITY,DISTRIBTRAN
Without Grant Option: NONE

[*,*]:
With Grant Option: NONE
Without Grant Option: NONE

SQL>
SQL> show protection on table NEW_PERS.EMPLOYEES;
Protection on Table NEW_PERS.EMPLOYEES
[DEV,SMITH]:
With Grant Option: SELECT,INSERT,UPDATE,DELETE,SHOW,CREATE,ALTER,DROP,

DBCTRL,REFERENCES
Without Grant Option: NONE

[*,*]:
With Grant Option: NONE
Without Grant Option: NONE

Example 3: Importing a database and displaying statistics

This example imports a database and uses the TRACE option to display DIO,
CPU, and PAGE FAULT statistics.

SQL> IMPORT DATABASE FROM personnel.rbr
cont> FILENAME personnel_new.rdb
cont> TRACE
cont> CREATE INDEX LOCAL_INDEX ON jobs (job_code);
IMPORTing STORAGE AREA: RDB$SYSTEM
IMPORTing table COLLEGES
Completed COLLEGES. DIO = 103, CPU = 0:00:00.89, FAULTS = 169
Starting INDEX definition COLL_COLLEGE_CODE
Completed COLL_COLLEGE_CODE. DIO = 25, CPU = 0:00:00.24, FAULTS = 26
IMPORTing table DEGREES
Completed DEGREES. DIO = 96, CPU = 0:00:01.15, FAULTS = 9
Starting INDEX definition DEG_COLLEGE_CODE
Completed DEG_COLLEGE_CODE. DIO = 27, CPU = 0:00:00.36, FAULTS = 1
Starting INDEX definition DEG_EMP_ID
Completed DEG_EMP_ID. DIO = 39, CPU = 0:00:00.49, FAULTS = 2
IMPORTing table DEPARTMENTS
Completed DEPARTMENTS. DIO = 99, CPU = 0:00:00.70, FAULTS = 3
IMPORTing table EMPLOYEES
Completed EMPLOYEES. DIO = 182, CPU = 0:00:01.60, FAULTS = 21

SQL Statements 8–27

IMPORT Statement

.

.

.
Starting CONSTRAINT definition SH_EMPLOYEE_ID_IN_EMP
Completed SH_EMPLOYEE_ID_IN_EMP. DIO = 48, CPU = 0:00:00.56, FAULTS = 2
Starting CONSTRAINT definition WS_STATUS_CODE_DOM_NOT_NULL
Completed WS_STATUS_CODE_DOM_NOT_NULL. DIO = 36, CPU = 0:00:00.23, FAULTS = 0
Completed import. DIO = 3530, CPU = 0:00:32.97, FAULTS = 2031
SQL>

Example 4: Reserving Sequence Slots During an Import Operation

SQL> IMPORT DATABASE FROM MF_PERSONNEL.RBR
cont> FILENAME ’mf_personnel.rdb’ BANNER
cont> RESERVE 64 SEQUENCES;

.

.

.
Unused Sequences were 32 now are 64
IMPORTing STORAGE AREA: RDB$SYSTEM
IMPORTing STORAGE AREA: DEPARTMENTS
IMPORTing STORAGE AREA: EMPIDS_LOW

Example 5: Specifying the BANNER option

SQL> import data from x file mf_personnel BANNER;
Exported by Oracle Rdb V7.2-501 Import/Export utility
A component of Oracle Rdb SQL V7.2-501
Previous name was mf_personnel
It was logically exported on 29-MAY-2003 12:32
Multischema mode is DISABLED
Database NUMBER OF USERS is 50
Database NUMBER OF CLUSTER NODES is 16
Database NUMBER OF DBR BUFFERS is 20
Database SNAPSHOT is ENABLED
Database SNAPSHOT is IMMEDIATE
Database JOURNAL ALLOCATION is 512
Database JOURNAL EXTENSION is 512
Database BUFFER SIZE is 6 blocks
Database NUMBER OF BUFFERS is 20
Adjustable Lock Granularity is Enabled Count is 3
Database global buffering is DISABLED
Database number of global buffers is 250
Number of global buffers per user is 5
Database global buffer page transfer is via DISK
Journal fast commit is DISABLED
Journal fast commit checkpoint interval is 0 blocks
Journal fast commit checkpoint time is 0 seconds
Commit to journal optimization is Disabled
Journal fast commit TRANSACTION INTERVAL is 256
LOCK TIMEOUT is 0 seconds
Statistics Collection is ENABLED
Unused Storage Areas are: 0

8–28 SQL Statements

IMPORT Statement

System Index Compression is DISABLED
Journal was Disabled
Unused Journals are: 1
Journal Backup Server was: Manual
Journal Log Server was: Manual
Journal Overwrite was: Disabled
Journal shutdown minutes was 60
Asynchronous Prefetch is ENABLED
Async prefetch depth buffers is 5
Asynchronous Batch Write is ENABLED
Async batch write clean buffers is 5
Async batch write max buffers is 4
Lock Partitioning is DISABLED
Incremental Backup Scan Optim uses SPAM pages
Unused Cache Slots are: 1
Workload Collection is DISABLED
Cardinality Collection is ENABLED
Metadata Changes are ENABLED
Row Cache is DISABLED
Detected Asynchronous Prefetch is ENABLED
Detected Asynchronous Prefetch Depth Buffers is 4
Detected Asynchronous Prefetch Threshold Buffers is 4
Open is Automatic, Wait period is 0 minutes
Shared Memory is PROCESS
Unused Sequences are: 32
The Transaction Mode(s) Enabled are:

ALL
IMPORTing STORAGE AREA: RDB$SYSTEM
IMPORTing STORAGE AREA: DEPARTMENTS
IMPORTing STORAGE AREA: EMPIDS_LOW
IMPORTing STORAGE AREA: EMPIDS_MID
IMPORTing STORAGE AREA: EMPIDS_OVER
IMPORTing STORAGE AREA: EMP_INFO
IMPORTing STORAGE AREA: JOBS
IMPORTing STORAGE AREA: MF_PERS_SEGSTR
IMPORTing STORAGE AREA: SALARY_HISTORY
IMPORTing table CANDIDATES
IMPORTing table COLLEGES
IMPORTing table DEGREES
IMPORTing table DEPARTMENTS
IMPORTing table EMPLOYEES
IMPORTing table JOBS
IMPORTing table JOB_HISTORY
IMPORTing table RESUMES
IMPORTing table SALARY_HISTORY
IMPORTing table WORK_STATUS
IMPORTing view CURRENT_SALARY
IMPORTing view CURRENT_JOB
IMPORTing view CURRENT_INFO

SQL Statements 8–29

IMPORT Statement

Example 6: Using the COMMIT EVERY option

SQL> import database
cont> from ’TEST$DB_SOURCE:MF_PERSONNEL’
cont> filename ’MF_PERSONNEL’
cont>
cont> commit every 10 rows
cont>
cont> create storage area DEPARTMENTS
cont> filename ’DEPARTMENTS’
cont> page format is mixed
cont> snapshot filename ’DEPARTMENTS’
cont> create storage area EMPIDS_LOW
cont> filename ’EMPIDS_LOW’
cont> page format is mixed
cont> snapshot filename ’EMPIDS_LOW’
cont> create storage area EMPIDS_MID
cont> filename ’EMPIDS_MID’
cont> page format is mixed
cont> snapshot filename ’EMPIDS_MID’
cont> create storage area EMPIDS_OVER
cont> filename ’EMPIDS_OVER’
cont> page format is mixed
cont> snapshot filename ’EMPIDS_OVER’

.

.

.
cont> ; ! end of import
Definition of STORAGE AREA RDB$SYSTEM overridden
Definition of STORAGE AREA MF_PERS_SEGSTR overridden
Definition of STORAGE AREA EMPIDS_LOW overridden
Definition of STORAGE AREA EMPIDS_MID overridden
Definition of STORAGE AREA EMPIDS_OVER overridden
Definition of STORAGE AREA DEPARTMENTS overridden
Definition of STORAGE AREA SALARY_HISTORY overridden
Definition of STORAGE AREA JOBS overridden
Definition of STORAGE AREA EMP_INFO overridden
COMMIT EVERY ignored for table EMPLOYEES due to PLACEMENT VIA INDEX processing
COMMIT EVERY ignored for table JOB_HISTORY due to PLACEMENT VIA INDEX processing
SQL>

8–30 SQL Statements

INCLUDE Statement

INCLUDE Statement

Inserts declarations or code into a precompiled host language program. You
can use the INCLUDE statement to insert:

• Host language declarations for the SQL Communications Area (SQLCA)
and a message vector

• Host language declarations for the SQL Descriptor Areas (SQLDA and
SQLDA2)

• Host language source code

• Host language declarations for repository record definitions

Environment

You can use the INCLUDE statement in precompiled host language programs
only. Programs must either use an INCLUDE SQLCA statement or explicitly
declare an SQLCODE variable. The other forms of the INCLUDE statement
are optional (see the Usage Notes).

Format

INCLUDE SQLCA
EXTERNAL

SQLDA
SQLDA2
<file-spec>
FROM DICTIONARY <path-name>

FIXED
NULL TERMINATED BYTES

AS <name>

Arguments

AS name
Specifies a name to override the structure name of the record from the
repository. By default, the SQL precompiler takes the structure name from the
repository record name.

SQL Statements 8–31

INCLUDE Statement

EXTERNAL
Declares an external reference to the SQLCA structure for SQL precompiled
C programs. If you have multiple modules that use the INCLUDE SQLCA
statement, you can add the EXTERNAL keyword to all but one of them.

If your application shares the SQLCA among multiple images, one image must
define the SQLCA while all other images must reference the SQLCA. Use the
EXTERNAL keyword to reference the SQLCA.

file-spec
The file specification for source code to be inserted into your program. The
file specification must refer to a standard OpenVMS text file. SQL does not
support the INCLUDE statement from text libraries (file extension .tlb). Use
the SQL INCLUDE statement in either of these cases:

• The source code to be included contains embedded SQL statements.

• The source code to be included contains host language variable declarations
to which embedded SQL statements in other parts of the program refer.

If the source code contains neither SQL statements nor variables to which
SQL statements refer, using the SQL INCLUDE statement is no different from
using host language statements to include files.

FIXED
The FIXED and NULL TERMINATED BYTES clauses tell the precompiler how
to interpret C language CHAR fields. If you specify FIXED, the precompiler
interprets CHAR fields from the repository as fixed character strings.

FROM DICTIONARY path-name
Specifies the path name for a repository record definition. Because SQL treats
the path name as a string literal, you should enclose it in single quotation
marks. SQL declares a host structure corresponding to the repository record
definition and gives it the same name. SQL statements embedded in the
program can then refer to the host structure.

Typically, programs use the FROM DICTIONARY argument as a convenient
way to declare host structures that correspond to table definitions stored in the
repository.

SQL stores table definitions in the repository in the following cases only:

• Both the CREATE DATABASE statement and the database declaration
for the attach in which the table was defined specified the PATHNAME
argument.

8–32 SQL Statements

INCLUDE Statement

• The database definitions were copied to the repository with an
INTEGRATE statement.

However, programs can use the FROM DICTIONARY argument to declare
host structures for any CDD$RECORD repository object type, including those
repository objects defined as part of the database.

Using the INCLUDE statement does more than using a comparable host
language statement that inserts a CDD$RECORD object into the program.
The INCLUDE FROM DICTIONARY statement lets you refer to the repository
record in an embedded SQL statement, while the host language statement does
not.

NULL TERMINATED BYTES
Specifies that CHAR fields from the repository are null-terminated. The
module processor interprets the length field in the repository as the number
of bytes in the string. If n is the length in the repository, then the number of
data bytes is n–1, and the length of the string is n bytes.

In other words, the precompiler assumes that the last character of the string is
for the null terminator. Thus, a field that the repository lists as 10 characters
can only hold a 9-character SQL field from the C precompiler.

If you do not specify a character interpretation option, NULL TERMINATED
BYTES is the default.

For more information, see the NULL TERMINATED CHARACTERS argument
in Chapter 3.

SQLCA
Specifies that SQL inserts into the program the SQLCA and a message vector
(RDB$MESSAGE_VECTOR) structure specific to supported database systems.
Both the SQLCA and the message vector provide ways of handling error
conditions:

• The SQLCA is a collection of variables that SQL uses to provide
information about the execution of SQL statements to application
programs. The SQLCA shows if a statement was successful and, for
some conditions, the particular error when a statement was not successful.

• The message vector is also a collection of variables that SQL updates after
SQL executes a statement. The message vector also lets programs check
if a statement was successful, but provides more detail than the SQLCA
about the type of error condition if a statement was not successful.

For more information on the SQLCA and the message vector, see Appendix C.

SQL Statements 8–33

INCLUDE Statement

SQLDA
Specifies that SQL inserts the SQLDA into the program. The SQLDA is
a collection of variables used only in dynamic SQL. The SQLDA provides
information about dynamic SQL statements to the program, and information
about host language variables in the program to SQL.

SQLDA2
Specifies that SQL inserts the SQLDA2 into the program. The SQLDA2,
like the SQLDA, is a collection of variables that provides information about
dynamic SQL statements to the program and information about host language
variables in the program to SQL. You should use the SQLDA2 in any dynamic
statement where the column name used in a parameter marker or select list
item is one of the date-time or interval data types.

For more information on the SQLDA and SQLDA2, see Appendix D.

Usage Notes

• The Ada and Pascal precompilers do not support the INCLUDE FROM
DICTIONARY statement.

• You do not have to use the INCLUDE SQLCA statement in programs.
However, if you do not, you must explicitly declare the SQLCODE variable
to receive values from SQL.

To comply with the ANSI/ISO SQL standard, you should explicitly declare
the SQLCODE variable instead of using the INCLUDE SQLCA statement.
However, programs that do not use the INCLUDE SQLCA statement will
not have the RDB$MESSAGE_VECTOR message vector structure declared
by the precompiler. Such programs may have to explicitly declare the
message vector. See Appendix C.3 for sample declarations of the message
vector.

• Programs that use an INCLUDE SQLCA statement must place it where it
is valid to declare variables.

• All SQL statements embedded in a precompiled program must be within
the scope of either an SQLCODE or SQLCA declaration. The SQL
precompiler supports block structure in Pascal, Ada, and C programs
but not in COBOL, FORTRAN, or PL/I. This means SQL is more restrictive
about where it allows embedded SQL statements in COBOL, FORTRAN,

8–34 SQL Statements

INCLUDE Statement

and PL/I programs that contain multiple modules than in Pascal, Ada, and
C (a module is a set of statements that can be separately compiled).

In COBOL, FORTRAN, and PL/I programs, only one module can
declare an SQLCA or SQLCODE parameter. Because of this, program
source files with more than one module cannot contain embedded SQL
statements in more than one of the modules.

If a module contains more than one routine, you can use SQL
statements in those routines provided they are within the scope of
the INCLUDE SQLCA statement. COBOL and PL/I allow such nested
routines, but FORTRAN does not.

In Ada, C, and Pascal programs, all SQL statements must be within
the scope of an SQLCODE or SQLCA declaration; however, each
module of a program can contain a declaration (or many declarations,
such as one in each routine in the module). Thus, you can embed SQL
statements in more than one module in Ada, C, and Pascal programs.

• SQL does not require programs that use the INCLUDE FROM
DICTIONARY statement to declare aliases with the PATHNAME
argument. However, programs that use the INCLUDE FROM
DICTIONARY statement to declare host structures that correspond to
table definitions must specify a complete repository path name for those
table definitions.

The database system stores table definitions in a path name called
RDB$RELATIONS that is subordinate to the database path name. When
referencing these definitions the path name in the INCLUDE FROM
DICTIONARY statement must include the RDB$RELATIONS name in the
path name specification.

• Source code files specified in an SQL INCLUDE file-spec statement cannot
contain nested INCLUDE file-spec statements themselves.

• The SQL precompiler will not process an INCLUDE statement in the
middle of a variable declaration. The following segment from a COBOL
program illustrates an INCLUDE statement that is not processed:

01 dept_rec pic x(24).

01 commarea.

EXEC SQL INCLUDE ’A.DAT’ END-EXEC.

SQL Statements 8–35

INCLUDE Statement

Examples

Example 1: Including a host structure declaration

This simple COBOL program uses the INCLUDE FROM DICTIONARY
statement to declare a host structure that corresponds to the EMPLOYEES
table in the sample personnel database. The repository path name specifies the
RDB$RELATIONS repository directory between the database directory and the
table name.

IDENTIFICATION DIVISION.
PROGRAM-ID. INCLUDE_FROM_CDD.
*
* Illustrate how to use the INCLUDE FROM DICTIONARY
* statement to declare a host structure corresponding to
* the EMPLOYEES table:
*
DATA DIVISION.
WORKING-STORAGE SECTION.
EXEC SQL WHENEVER SQLERROR GOTO ERR END-EXEC.
*
* Include the SQLCA:
EXEC SQL INCLUDE SQLCA END-EXEC.
*
* Declare the schema:
* (Notice that declaring the alias with the
* FILENAME qualifier would not have precluded
* using the INCLUDE FROM DICTIONARY statement later.)
EXEC SQL DECLARE PERS ALIAS FOR

PATHNAME ’CDD$DEFAULT.PERSONNEL’ END-EXEC.
*
* Create a host structure that corresponds to the
* EMPLOYEES table with the INCLUDE FROM DICTIONARY
* statement. The path name in the INCLUDE statement
* must specify the RDB$RELATIONS directory before
* the table name:
EXEC SQL INCLUDE FROM DICTIONARY

’CDD$DEFAULT.PERSONNEL.RDB$RELATIONS.EMPLOYEES’
END-EXEC.

*
* Declare an indicator structure for the host
* structure created by the INCLUDE FROM DICTIONARY statement:
01 EMPLOYEES-IND.

02 EMP-IND OCCURS 12 TIMES PIC S9(4) COMP.
EXEC SQL DECLARE E_CURSOR CURSOR

FOR SELECT * FROM EMPLOYEES END-EXEC.

8–36 SQL Statements

INCLUDE Statement

PROCEDURE DIVISION.
0.

DISPLAY "Display rows from EMPLOYEES:".
EXEC SQL OPEN E_CURSOR END-EXEC.
EXEC SQL FETCH E_CURSOR INTO :EMPLOYEES:EMP-IND END-EXEC.
PERFORM UNTIL SQLCODE NOT = 0

DISPLAY EMPLOYEE_ID, FIRST_NAME, LAST_NAME
EXEC SQL FETCH E_CURSOR INTO :EMPLOYEES:EMP-IND END-EXEC

END-PERFORM.
EXEC SQL CLOSE E_CURSOR END-EXEC.

EXEC SQL ROLLBACK END-EXEC.
EXIT PROGRAM.

ERR.
DISPLAY "unexpected error ", sqlcode with conversion.
CALL "SQL$SIGNAL".

Example 2: Including the SQLCA

This fragment from a PL/I program shows the INCLUDE SQLCA statement
and illustrates how an error-handling routine refers to the SQLCA.

The program creates an intermediate result table, TMP, and copies the
EMPLOYEES table from the personnel database into it. It then declares a
cursor for TMP and displays the rows of the cursor on the terminal screen.

/* Include the SQLCA: */
EXEC SQL INCLUDE SQLCA;
EXEC SQL WHENEVER SQLERROR GOTO ERROR_HANDLER;
EXEC SQL DECLARE ALIAS FOR FILENAME personnel;
DCL MANAGER_ID CHAR(5),

LAST_NAME CHAR(20),
DEPT_NAME CHAR(20);

DCL COMMAND_STRING CHAR(256);

EXEC SQL CREATE TABLE TMP
(MANAGER_ID CHAR(5),
LAST_NAME CHAR(20),
DEPT_NAME CHAR(20));

COMMAND_STRING =
’INSERT INTO TMP

SELECT E.LAST_NAME,
E.FIRST_NAME,
D.DEPARTMENT_NAME

FROM EMPLOYEES E, DEPARTMENTS D
WHERE E.EMPLOYEE_ID = D.MANAGER_ID’;

EXEC SQL EXECUTE IMMEDIATE :COMMAND_STRING;

SQL Statements 8–37

INCLUDE Statement

EXEC SQL DECLARE X CURSOR FOR SELECT * FROM TMP;
EXEC SQL OPEN X;
EXEC SQL FETCH X INTO MANAGER_ID, LAST_NAME, DEPT_NAME;
DO WHILE (SQLCODE = 0);

PUT SKIP EDIT
(MANAGER_ID, ’ ’, LAST_NAME, ’ ’, DEPT_NAME)
(A,A,A,A,A);

EXEC SQL FETCH X INTO MANAGER_ID, LAST_NAME, DEPT_NAME;
END;
EXEC SQL ROLLBACK;
PUT SKIP EDIT (’ ALL OK’) (A);
RETURN;

ERROR_HANDLER:

/* Display the value of the SQLCODE field in the SQLCA: */
PUT SKIP EDIT (’UNEXPECTED SQLCODE VALUE ’, SQLCODE) (A, F(9));
EXEC SQL WHENEVER SQLERROR CONTINUE;
EXEC SQL ROLLBACK;

8–38 SQL Statements

INSERT Statement

INSERT Statement

Adds a new row, or a number of rows, to a table or view. You can also use the
INSERT statement with a cursor to assign values to the segments in a column
of the LIST OF BYTE VARYING data type.

Before you assign values to the segments in a column of the LIST OF BYTE
VARYING data type, you must first assign a value to one or more other
columns in the same row. To do this, use a positioned insert. A positioned
insert is an INSERT statement that specifies an insert-only table cursor. This
type of INSERT statement sets up the proper row context for subsequent list
cursors to assign values to list segments.

You can specify the name of a static, a dynamic, or an extended dynamic cursor
in a positioned insert. If you specify a static cursor name, that cursor name
must also be specified in a DECLARE CURSOR statement within the same
module. See the DECLARE CURSOR Statement for more information on
static, dynamic, and extended dynamic cursors.

When you use an INSERT statement to assign values to list segments:

• The current transaction must not be read-only.

• You cannot specify a cursor name that refers to an update table cursor.

• Your cursor must specify an intermediate table.

• The value that you assign is appended to the end of the list.

Environment

You can use the INSERT statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

SQL Statements 8–39

INSERT Statement

Format
INSERT INTO <table-name>

<view-name> AS <correlation-name>
CURSOR <cursor-name>

DEFAULT VALUES
returning-clause

(<column-name>)
,

value-clause
select-expr

optimize-clause

value-clause =

VALUES (<parameter>)
<qualified-parameter>
value-expr
DEFAULT

,

returning-clause =

RETURNING value-expr INTO <parameter>
PLACEMENT ONLY RETURNING DBKEY

ROWID

value-expr =

numeric-value-expr
char-value-expr
date-time-value-expr
interval-value-expr
date-vms-value-expr
DBKEY
NULL
ROWID

8–40 SQL Statements

INSERT Statement

select-expr =

select-clause
(select-expr)
TABLE table-ref

select-merge-clause

order-by-clause offset-clause limit-to-clause

optimize-clause =

OPTIMIZE FOR FAST FIRST
TOTAL TIME
SEQUENTIAL ACCESS

USING <outline-name>
WITH DEFAULT SELECTIVITY

SAMPLED
AGGRESSIVE

AS <query-name>

select-merge-clause =

EXCEPT
DISTINCT CORRESPONDING

INTERSECT NATURAL
DISTINCT

MINUS
UNION

ALL
DISTINCT

Arguments

column-name
Specifies a list of names of columns in the table or view. You can list the
columns in any order, but the names must correspond to those of the table or
view.

If you do not include all the column names in the list, SQL assigns a null value
to those not specified, unless columns were:

• Defined with a default

SQL Statements 8–41

INSERT Statement

• Based on a domain that has a default

• Defined with the NOT NULL clause in the CREATE TABLE statement

You cannot omit from an INSERT statement the names of columns defined
with the NOT NULL clause. If you do, the statement fails.

Omitting the list of column names altogether is the same as listing all the
columns of the table or view in the same order as they were defined.

You must omit the list of column names when using the INSERT statement
to assign values to the segments in a column of data type LIST OF BYTE
VARYING. Column names are not valid in this context.

CURSOR cursor-name
Keyword required when using cursors. You must use a cursor to insert values
into any row that contains a column of the LIST OF BYTE VARYING data
type.

DEFAULT
Forces the named column to assume the default value defined for that column
(or NULL if none is defined).

If the DEFAULT clause is used in an INSERT statement then one of the
following will be applied:

• If a DEFAULT attribute is present for the column then that value will be
applied during INSERT.

• Else if an AUTOMATIC attribute is present for the column then that value
will be applied during INSERT. This can only happen if the SET FLAGS
’AUTO_OVERRIDE’ is used since during normal processing these columns
are read-only.

• Otherwise a NULL will be applied during INSERT.

DEFAULT VALUES
Specifies that every column in the table is assigned the default value (or
NULL, if the column has no default value).

INTO parameter
Inserts the value specified to a specified parameter. The INTO parameter
clause is not valid in interactive SQL.

8–42 SQL Statements

INSERT Statement

INTO table-name
INTO view-name
The name of the target table or view to which you want to add a row. Inserts
the value specified to a specified parameter. The INTO parameter clause is not
valid in interactive SQL.

limit-to-clause
See Section 2.8.1 for a description of the LIMIT TO expression.

OPTIMIZE AS query-name
The OPTIMIZE AS clause assigns a name to the query. Use the SET FLAGS
’STRATEGY’ to see this name displayed.

OPTIMIZE FOR
The OPTIMIZE FOR clause specifies the preferred optimizer strategy for
statements that specify a select expression. The following options are available:

• FAST FIRST

A query optimized for FAST FIRST returns data to the user as quickly as
possible, even at the expense of total throughput.

If a query can be cancelled prematurely, you should specify FAST FIRST
optimization. A good candidate for FAST FIRST optimization is an
interactive application that displays groups of records to the user, where
the user has the option of aborting the query after the first few screens.
For example, singleton SELECT statements default to FAST FIRST
optimization.

If optimization strategy is not explicitly set, FAST FIRST is the default.

• TOTAL TIME

If your application runs in batch, accesses all the records in the query,
and performs updates or writes a report, you should specify TOTAL TIME
optimization. Most queries benefit from TOTAL TIME optimization.

• SEQUENTIAL ACCESS

Forces the use of sequential access. This is particularly valuable for tables
that use the strict partitioning functionality.

OPTIMIZE USING outline-name
The OPTIMIZE USING clause explicitly names the query outline to be used
with the select expression even if the outline ID for the select expression and
for the outline are different.

See the CREATE OUTLINE Statement for more information on creating an
outline.

SQL Statements 8–43

INSERT Statement

OPTIMIZE WITH
Selects one of three optimzation controls: DEFAULT (as used by previous
versions of Rdb), AGGRESSIVE (assumes smaller numbers of rows will
be selected), and SAMPLED (which uses literals in the query to perform
preliminary estimation on indices).

The following example shows how to use this clause.

SQL> select * from employees where employee_id > ’00200’
cont> optimize with sampled selectivity;

order-by-clause
See Section 2.8.1 for a description of the ORDER BY expression.

PLACEMENT ONLY RETURNING DBKEY
PLACEMENT ONLY RETURNING ROWID
Returns the dbkey of a specified record, but does not insert any actual data.
The PLACEMENT ONLY RETURNING DBKEY clause lets you determine
the target page number for records that are to be loaded into the database.
When you use this clause, only the area and page numbers from the dbkeys
are returned. Use of this clause can improve bulk data loads. If you use the
PLACEMENT ONLY clause, you can return only the dbkey values. Use the
PLACEMENT ONLY RETURNING DBKEY clause only in programs that load
data into an existing database and only with rows placed via a hashed index in
the storage map. For more information, see the Oracle Rdb Guide to Database
Design and Definition.

The keyword ROWID is a synonym to the DBKEY keyword.

RETURNING value-expr
Returns the value of the column specified in the values list. If DBKEY or
ROWID is specified, this argument returns the database key (dbkey) of the row
being added. (The ROWID keyword is a synonym to the DBKEY keyword.)
When the DBKEY value is valid, subsequent queries can use the DBKEY value
to access the row directly.

The RETURNING DBKEY clause is not valid in an INSERT statement used
to assign values to the segments in a column of the LIST OF BYTE VARYING
data type.

select-clause
See Section 2.8.1 for a description of the SELECT expression.

8–44 SQL Statements

INSERT Statement

select-expr
Specifies a select expression that specifies a result table. The result table can
contain zero or more rows. All the rows of the result table are added to the
target table named in the INTO clause.

This is the only situation supported in SQL that allows you to specify a second
database in a single SQL statement.

The number of columns in the result table must correspond to the number of
columns specified in the list of column names. If you did not specify a list of
column names, the number of columns in the result table must be the same as
the number of columns in the target table. For each row of the result table,
the value of the first column is assigned to the first column of the target table,
the second value to the second column, and so on.

You cannot specify a select expression in an INSERT statement used to assign
values to the segments in a column of the LIST OF BYTE VARYING data type.

For detailed information on select expressions, see Section 2.8.1.

VALUES value-expr
Specifies a list of values to be added to the table as a single row. The values
can be specified through parameters, qualified parameters, column select
expressions, value expressions, or the default values.

See Chapter 2 for more information about parameters, qualified parameters,
column select expressions, value expressions, and default values.

The values listed in the VALUES argument can be selected from another table,
but both tables must reside in the same database.

The number of values in the list must correspond to the number of columns
specified in the list of column names. If you did not specify a column list, the
number of values in the list must be the same as the number of columns in the
table. The first value specified in the list is assigned to the first column, the
second value to the second column, and so on.

Values for IDENTITY, COMPUTED BY, and AUTOMATIC COLUMNS are not
able to be inserted so these column types are not considered for the default
column list.

See the SQL Online Help topic INSERT EXAMPLES for an example that
shows an INSERT statement with a column select expression.

SQL Statements 8–45

INSERT Statement

Usage Notes

• When you use the INSERT statement to add rows to a view, you are
actually adding rows to the base tables on which the view is based. In
addition, SQL restricts the types of views with which you can use the
INSERT statement. See the CREATE VIEW Statement for rules about
inserting, updating, and deleting values in views.

• You can get a confusing error message when you attempt to insert rows
into a view and both the following are true:

The view is based on a table that contains a column defined with the
NOT NULL attribute.

The view definition does not include the column defined with the NOT
NULL attribute.

For example:

SQL> -- Create a view that is not a read-only view:
SQL> CREATE VIEW TEMP AS
cont> SELECT SUPERVISOR_ID FROM JOB_HISTORY;
SQL>
SQL> -- However, the JOB_HISTORY table on which the view is based
SQL> -- contains a column, EMPLOYEE_ID, that is defined with the
SQL> -- NOT NULL attribute. Because the TEMP view does not include
SQL> -- the EMPLOYEE_ID column, all attempts to insert rows into
SQL> -- it will fail:
SQL> INSERT INTO TEMP (SUPERVISOR_ID) VALUES (’99999’);
1 row inserted
SQL> COMMIT;
%RDB-E-INTEG_FAIL, violation of constraint JH_EMPLOYEE_ID_IN_EMP

caused operation to fail
SQL> ROLLBACK;

• To move data between databases, SQL lets you refer to a table from one
database in the INTO clause of an INSERT statement, and to tables from
another database in a select expression within that INSERT statement.

This is the only situation supported in SQL that allows you to specify a
second database in a single SQL statement.

• The PLACEMENT ONLY RETURNING DBKEY (or ROWID) clause of the
INSERT statement returns the dbkey of a specified row. This clause allows
an application to build a list of unordered dbkeys for all specified rows.
You can then use the Sort utility (SORT) to create a sorted list of dbkeys
and use this sorted list to insert the rows. When you store records sorted
by dbkey, you are writing rows to database pages in sequence with all

8–46 SQL Statements

INSERT Statement

rows for a page written to the page while it is in the buffer. Because less
random I/O is involved when you store records in this way, a significant
performance improvement can occur during your load procedure. This
clause can result in significant performance improvements in database load
procedures that specify the PLACEMENT VIA INDEX clause for a hashed
index. Use it only with records for which a hashed index has been defined.

• You cannot insert a row into an insert-only table cursor by using the
RETURNING DBKEY clause.

The following example shows the invalid syntax:

SQL> ATTACH ’FILENAME MF_PERSONNEL’;
SQL> DECLARE CURSOR1 INSERT ONLY TABLE CURSOR FOR SELECT * FROM COLLEGES;
SQL> OPEN CURSOR1;
SQL> INSERT INTO CURSOR CURSOR1 (COLLEGE_CODE, COLLEGE_NAME)
cont> VALUES (’ASU’,’Arizona State University’) RETURNING DBKEY;
%SQL-F-NORETURN, Specifying a RETURNING clause is incompatible with a
positioned insert statement
SQL> CLOSE CURSOR1;
SQL>
SQL> DECLARE CURSOR2 INSERT ONLY TABLE CURSOR FOR
cont> SELECT * FROM RESUMES;
SQL> OPEN CURSOR2;
SQL> INSERT INTO CURSOR CURSOR2 (EMPLOYEE_ID)
cont> VALUES (’00169’) RETURNING DBKEY;
%SQL-F-NORETURN, Specifying a RETURNING clause is incompatible with a
positioned insert statement
SQL> CLOSE CURSOR2;
SQL> DISCONNECT ALL;

To avoid this problem, specify the SQL INSERT statement without using
a cursor. Use the INSERT INTO table-name . . . RETURNING DBKEY
INTO . . . syntax.

• If an outline exists, Oracle Rdb uses the outline specified in the OPTIMIZE
USING clause unless one or more of the directives in the outline cannot be
followed. For example, if the compliance level for the outline is mandatory
and one of the indexes specified in the outline directives has been deleted,
the outline is not used. SQL issues an error message if an existing outline
cannot be used.

If you specify the name of an outline that does not exist, Oracle Rdb
compiles the query, ignores the outline name, and searches for an existing
outline with the same outline ID as the query. If an outline with the same
outline ID is found, Oracle Rdb attempts to execute the query using the
directives in that outline. If an outline with the same outline ID is not
found, the optimizer selects a strategy for the query for execution.

SQL Statements 8–47

INSERT Statement

See the Oracle Rdb7 Guide to Database Performance and Tuning for more
information regarding query outlines.

• If the target table of the insert statement has an IDENTITY column, then
the CURRVAL pseudo column can be used with the name of the table to
reference the new sequence number. For instance, this example assumes
the table ORDER has a column defined with the IDENTITY attribute.

SQL> insert into ORDER values (...);
SQL> insert into ORDER_LINES (ORDER.CURRVAL, ...);
SQL> insert into ORDER_LINES (ORDER.CURRVAL, ...);

This example shows that the FOREIGN KEY value is selected using a
reference to the table name followed by the CURRVAL pseudo column.

However, the NEXTVAL pseudo column can not be used to fetch a new
identity value. Only an INSERT on the table can generate a new identity
value.

• If the INSERT on the table is rolled back or fails due to a constraint or
trigger error condition, then the used identity values are discarded. If
a row is deleted from the table, the identity value is not reused. For an
exception to the reuse rule, see the usage note on TRUNCATE TABLE
statement.

Examples

Example 1: Adding a row with literal values

The following interactive SQL example stores a new row in the DEPARTMENTS
table of the sample personnel database. It explicitly assigns a literal value to
each column in the row. Because the statement includes the RETURNING
DBKEY clause, SQL returns the dbkey value 29:435:9.

8–48 SQL Statements

INSERT Statement

SQL> INSERT INTO DEPARTMENTS
cont> -- List of columns:
cont> (DEPARTMENT_CODE,
cont> DEPARTMENT_NAME,
cont> MANAGER_ID,
cont> BUDGET_PROJECTED,
cont> BUDGET_ACTUAL)
cont> VALUES
cont> -- List of values:
cont> (’RECR’,
cont> ’Recreation’,
cont> ’00175’,
cont> 240000,
cont> 128776)
cont> RETURNING DBKEY;

DBKEY
29:435:9

1 row inserted

Example 2: Adding a row using parameters

This example is a COBOL program fragment that adds a row to the JOB_
HISTORY table by explicitly assigning values from parameters to columns in
the table. This example:

• Prompts for the column values.

• Declares a read/write transaction. Because you are updating the JOB_
HISTORY table, you do not want to conflict with other users who may be
reading data from this table. Therefore, you use the protected share mode
and the write lock type.

• Stores the row by assigning the parameters to the columns of the table.

• Checks the value of the SQLCODE variable and repeats the INSERT
operation if the value is less than zero.

• Uses the COMMIT statement to make the update permanent.

STORE-JOB-HISTORY.

SQL Statements 8–49

INSERT Statement

DISPLAY "Enter employee ID: " WITH NO ADVANCING.
ACCEPT EMPL-ID.
DISPLAY "Enter job code: " WITH NO ADVANCING.
ACCEPT JOB-CODE.
DISPLAY "Enter starting date: " WITH NO ADVANCING.
ACCEPT START-DATE.
DISPLAY "Enter ending date: " WITH NO ADVANCING.
ACCEPT END-DATE.
DISPLAY "Enter department code: " WITH NO ADVANCING.
ACCEPT DEPT-CODE.
DISPLAY "Enter supervisor’s ID: " WITH NO ADVANCING.
ACCEPT SUPER.

EXEC SQL
SET TRANSACTION READ WRITE

RESERVING JOB_HISTORY FOR PROTECTED WRITE
END-EXEC

EXEC SQL
INSERT INTO JOB_HISTORY

(EMPLOYEE_ID,
JOB_CODE,
JOB_START,
JOB_END,
DEPARTMENT_CODE,
SUPERVISOR_ID)

VALUES (:EMPL-ID,
:JOB-CODE,
:START-DATE,
:END-DATE,
:DEPT-CODE,
:SUPER)

END-EXEC

IF SQLCODE < 0 THEN
EXEC SQL ROLLBACK END-EXEC
DISPLAY "An error has occurred. Try again."
GO TO STORE-JOB-HISTORY

END-IF

EXEC SQL COMMIT END-EXEC

8–50 SQL Statements

INSERT Statement

Example 3: Copying from one table to another

This interactive SQL example copies a subset of data from the EMPLOYEES
table to an identical intermediate result table. To do this, it uses a select
expression that limits rows of the select expression’s result table to those with
data on employees who live in New Hampshire.

SQL> INSERT INTO TEMP
cont> (EMPLOYEE_ID,
cont> LAST_NAME,
cont> FIRST_NAME,
cont> MIDDLE_INITIAL,
cont> ADDRESS_DATA_1,
cont> ADDRESS_DATA_2,
cont> CITY,
cont> STATE,
cont> POSTAL_CODE,
cont> SEX,
cont> BIRTHDAY,
Cont> STATUS_CODE)
cont> SELECT * FROM EMPLOYEES
cont> WHERE STATE = ’NH’;
90 rows inserted
SQL>

Example 4: Copying rows between databases with the INSERT statement

This example copies the contents of the EMPLOYEES table from the personnel
database to another database, LOCALDATA.

SQL> ATTACH ’ALIAS PERS FILENAME personnel’;
SQL> ATTACH ’ALIAS LOCALDB FILENAME localdata’;
SQL>
SQL> DECLARE TRANSACTION
cont> ON PERS USING (READ ONLY
cont> RESERVING PERS.EMPLOYEES FOR SHARED READ)
cont> AND
cont> ON LOCALDB USING (READ WRITE
cont> RESERVING LOCALDB.EMPLOYEES FOR SHARED WRITE);
SQL>
SQL> INSERT INTO LOCALDB.EMPLOYEES
cont> SELECT * FROM PERS.EMPLOYEES;
100 rows inserted
SQL>

SQL Statements 8–51

INSERT Statement

Example 5: Adding data to columns of data type LIST OF BYTE VARYING

The following interactive SQL example adds a new row to the RESUMES table
of the sample personnel database. It first assigns a value to the EMPLOYEE_
ID column, then adds three lines of information to the RESUME column of the
same row. The RESUME column has the LIST OF BYTE VARYING data type.
You must specify the name of the list column (RESUME) in addition to the
table column when declaring the table cursor for a positioned insert.

SQL> DECLARE TBLCURSOR INSERT ONLY TABLE CURSOR FOR SELECT EMPLOYEE_ID, RESUME
cont> FROM RESUMES;
SQL> DECLARE LSTCURSOR INSERT ONLY LIST CURSOR FOR SELECT RESUME
cont> WHERE CURRENT OF TBLCURSOR;
SQL> OPEN TBLCURSOR;
SQL> INSERT INTO CURSOR TBLCURSOR (EMPLOYEE_ID) VALUES (’00167’);
1 row inserted
SQL> OPEN LSTCURSOR;
SQL> INSERT INTO CURSOR LSTCURSOR VALUES (’This is the resume for 00167’);
SQL> INSERT INTO CURSOR LSTCURSOR VALUES (’Boston, MA’);
SQL> INSERT INTO CURSOR LSTCURSOR VALUES (’Oracle Corporation’);
SQL> CLOSE LSTCURSOR;
SQL> CLOSE TBLCURSOR;
SQL> COMMIT;

Example 6: Using the PLACEMENT ONLY RETURNING DBKEY clause of
the INSERT statement

SQL> INSERT INTO EMPLOYEES
cont> (EMPLOYEE_ID, LAST_NAME, FIRST_NAME)
cont> VALUES
cont> (’5000’, ’Parsons’, ’Diane’)
cont> PLACEMENT ONLY RETURNING DBKEY;

DBKEY
56:34:-1

1 row allocated
SQL>

Example 7: Inserting Default Values for Selected Columns

SQL> INSERT INTO DEPARTMENTS
cont> (DEPARTMENT_CODE, DEPARTMENT_NAME, BUDGET_ACTUAL)
cont> VALUES
cont> (’RECR’,’Recreation’, DEFAULT);
1 row inserted
SQL> SELECT * FROM DEPARTMENTS WHERE DEPARTMENT_CODE=’RECR’;
DEPARTMENT_CODE DEPARTMENT_NAME MANAGER_ID
BUDGET_PROJECTED BUDGET_ACTUAL

RECR Recreation NULL
NULL NULL

1 row selected

8–52 SQL Statements

INSERT Statement

Example 8: Inserting a Row of All Default Values into a Table

SQL> INSERT INTO CANDIDATES
cont> DEFAULT VALUES;
1 row inserted
SQL> SELECT * FROM CANDIDATES
cont> WHERE LAST_NAME IS NULL;
LAST_NAME FIRST_NAME MIDDLE_INITIAL
CANDIDATE_STATUS

RESUME
NULL NULL NULL
NULL
>>
>>
>>

NULL
1 row selected

SQL Statements 8–53

INSERT from FILENAME Statement

INSERT from FILENAME Statement

Loads a column of the LIST OF BYTE VARYING data type from a text or
binary file without needing to use special application code. The specified file
is opened and each row is read and stored in the LIST OF BYTE VARYING
column specified by the list cursor.

Environment

You can use the INSERT statement in interactive SQL only.

Format
INSERT INTO CURSOR <cursor-name>

FILENAME <file-spec>
AS BINARY

TEXT
CHARACTER VARYING

Arguments

AS BINARY
AS CHARACTER VARYING
AS TEXT
Specifies whether the file specified with the FILENAME clause contains these
types of data:

• BINARY

Used to load unformatted data such as images and audio files. The
contents are broken into 512 octet segments during INSERT.

• CHARACTER VARYING

Used to load text but with no terminator. The contents are written one line
to a segment.

• TEXT

Used to load text, a terminator is added to each segment loaded. The
contents are written one line to a segment with trailing terminators
carriage return (CR) and line feed (LF).

8–54 SQL Statements

INSERT from FILENAME Statement

FILENAME filespec
The specification for the file that you want to load into the LIST OF BYTE
VARYING column.

INSERT INTO CURSOR cursor-name
The name of the target list cursor to which you want to add a list segment.

Usage Notes

• When you use an INSERT from FILENAME statement to assign values to
list segments:

The current transaction must be read/write.

Your cursor must specify an insert-only list cursor.

• Interactive SQL also reports the number of segments inserted, and
the length of the longest segment. To disable this output use the SET
DISPLAY NO ROW COUNT statement.

• The TEXT and CHARACTER VARYING source can contain segments of up
to 65500 bytes in length. In prior releases the upper limit was 512 octets.

Example

Example 1: Adding a New Row Using Data from a Text File

SQL> -- Declare a table cursor.
SQL> DECLARE TABLE_CURSOR
cont> INSERT ONLY TABLE CURSOR
cont> FOR SELECT * FROM RESUMES;
SQL> -- Open table cursor and insert values.
SQL> OPEN TABLE_CURSOR;
cont> INSERT INTO CURSOR TABLE_CURSOR
cont> VALUES (’10065’, NULL);
1 row inserted
SQL> -- Declare a list cursor.
SQL> DECLARE LIST_CURSOR
cont> INSERT ONLY LIST CURSOR
cont> FOR SELECT RESUME WHERE CURRENT OF TABLE_CURSOR;
SQL --Open list cursor.
SQL> OPEN LIST_CURSOR;
SQL> --Load text from file into LIST OF BYTE VARYING column.
SQL> INSERT INTO CURSOR LIST_CURSOR
cont> FILENAME ’resume_10065.sql’ AS TEXT;
SQL> CLOSE LIST_CURSOR;
SQL> CLOSE TABLE_CURSOR;
SQL> COMMIT;

SQL Statements 8–55

INTEGRATE Statement

INTEGRATE Statement

Makes definitions in a database and in a repository correspond by changing
definitions in either the database or the repository.

The INTEGRATE statement can also create database definitions in the
repository by copying from a database file to a specified repository.

Environment

You can issue the INTEGRATE statement only in interactive SQL.

Format

INTEGRATE

DATABASE

FILENAME <file-name> CREATE PATHNAME <path-name-2>
PATHNAME <path-name-1> ALTER FILES

ALTER DICTIONARY
DOMAIN <domain-name>
TABLE <table-name>

domain-name =

<name-of-domain>
<schema-name> .
<alias>

table-name =

<name-of-table>
<schema-name> .
<alias>
" <alias.name-of-table> "

8–56 SQL Statements

INTEGRATE Statement

Arguments

DATABASE FILENAME file-name CREATE PATHNAME path-name-2
Stores existing database system file definitions in the repository for the first
time. See Example 8–3. Use the INTEGRATE DATABASE FILENAME clause
if you did not specify PATHNAME or the repository was not installed when you
created the database.

If you use the INTEGRATE DATABASE FILENAME clause, the repository
database node specified in the path name must not exist. If older repository
definitions do exist with the path name you are specifying, specify a different
repository path name, placing the new database definitions elsewhere.

The file-name clause is the full or partial file specification that specifies the
source of the database definitions. You do not need to specify the file extension.
The database system automatically uses the database root file ending with the
.rdb file extension.

Path-name-2 is the repository path name for the repository where the
INTEGRATE statement creates the database definitions (using the database
system files as the source). You can specify either a full repository path name
or a relative repository path name. This must be the path name, not the name
of the database itself.

DATABASE PATHNAME path-name-1 ALTER FILES
Alters any table and domain definitions created with the CREATE TABLE
FROM statement or the CREATE DOMAIN FROM statement so they match
their sources in the repository. The INTEGRATE . . . ALTER FILES statement
has no effect on definitions not created with the FROM clause. This is useful if
the database file definitions no longer match the definitions in the repository.
See Example 8–1.

Path-name-1 is the repository path name for the repository database that is
the source for altering the definitions in the database. You can specify either a
full repository path name or a relative repository path name.

Caution

Using the ALTER FILES clause may destroy data associated with
definitions in your database file if those definitions are not defined
in your repository. In this situation, you will lose real data. For this
reason, use the ALTER FILES clause with caution.

SQL Statements 8–57

INTEGRATE Statement

DATABASE PATHNAME path-name-1 ALTER DICTIONARY
Alters the database definitions in the dictionary so they are the same as those
in the database. This is useful if repository definitions no longer match the
definitions in the database file. See Example 8–2. Note, though, that altering
database definitions in the repository may affect other applications that refer
to these definitions.

The repository must already exist and may contain definitions.

Path-name-1 is the repository path name for the repository database that SQL
alters using the definitions in the database file as a source. You can specify
either a full repository path name or a relative path name.

DOMAIN domain-name ALTER FILES
Alters the domain definitions in the database to match the field definitions in
the repository. Collating sequences referenced by the domain and columns that
are based on the domain and the tables that contain them may also be altered
if they have changed in the repository.

DOMAIN domain-name ALTER DICTIONARY
Alters the field definitions in the repository to match the domain definitions in
the database. Collating sequences referenced by the domain and columns that
are based on the domain and the tables that contain them may also be altered
if they have changed in the database.

TABLE table-name ALTER FILES
Alters the table definitions in the database to match the record definitions in
the repository. Other objects referencing the table or that are referenced by
it and have changed definition in the repository may be altered. These other
objects are:

• Domains

• Collating sequences

• Other referenced tables and columns

• Foreign key constraints and check constraints

• Indexes

• Views that reference the table

• Storage maps and storage areas referenced by an index

8–58 SQL Statements

INTEGRATE Statement

TABLE table-name ALTER DICTIONARY
Alters the record definitions in the repository to match the table definitions
in the database. Other objects referencing the table or that are referenced by
it and have changed definitions in the database may be altered. These other
objects are:

• Fields

• Collating sequences

• Other referenced records and fields

• Foreign key constraints and check constraints

• Indexes

Usage Notes

• You must commit the transaction after entering the INTEGRATE
statement.

• The INTEGRATE DATABASE statement implicitly attaches to the
database.

• When using the INTEGRATE DOMAIN and INTEGRATE TABLE
statements, you must attach by path name to integrate domains and
tables.

• The domain or table specified in the INTEGRATE DOMAIN or the
INTEGRATE TABLE statements must exist in both the repository and
the database before it can be integrated. An error is returned if the named
domain or table does not exist.

• The domain name or table name specified in the INTEGRATE DOMAIN
ALTER DICTIONARY or the INTEGRATE TABLE ALTER DICTIONARY
statements are not Oracle CDD/Repository path names but valid Oracle
Rdb domain and table names.

Examples

Example 8–1 shows how to use the INTEGRATE statement with the ALTER
FILES clause. In this example, fields (domains) are defined in the repository.
Then, using SQL, a table is created based on the repository definitions.
Subsequently, the repository definitions are changed so the definitions in the
database file and the repository no longer match. The INTEGRATE statement

SQL Statements 8–59

INTEGRATE Statement

resolves this situation by altering the database definitions using the repository
definitions as the source.

Example 8–1 Updating the Database File Using Repository Definitions

$!
$! Define CDD$DEFAULT
$!
$ DEFINE CDD$DEFAULT SYS$COMMON:[REPOSITORY]CATALOG
$!
$! Enter the CDO to create new field and record definitions:
$!
$ REPOSITORY
CDO> !
CDO> ! Create two field (domain) definitions in the repository:
CDO> !
CDO> DEFINE FIELD PART_NUMBER DATATYPE IS WORD.
CDO> DEFINE FIELD PRICE DATATYPE IS WORD.
CDO> !
CDO> ! Define a record called INVENTORY using the two
CDO> ! fields previously defined:
CDO> !
CDO> DEFINE RECORD INVENTORY.
CDO> PART_NUMBER.
CDO> PRICE.
CDO> END RECORD INVENTORY.
CDO> !
CDO> EXIT
$!
$! Enter SQL:
$!
$ SQL
SQL> !
SQL> ! In SQL, create the database ORDERS:
SQL> !
SQL> CREATE DATABASE ALIAS ORDERS PATHNAME ORDERS;
SQL> !
SQL> ! Create a table in the database ORDERS using the
SQL> ! INVENTORY record (table) just created in the repository:
SQL> !
SQL> CREATE TABLE FROM SYS$COMMON:[REPOSITORY]CATALOG.INVENTORY
cont> ALIAS ORDERS;

(continued on next page)

8–60 SQL Statements

INTEGRATE Statement

Example 8–1 (Cont.) Updating the Database File Using Repository
Definitions

SQL> !
SQL> ! Use the SHOW TABLE statement to see information about
SQL> ! INVENTORY the table:
SQL> !
SQL> SHOW TABLE ORDERS.INVENTORY
Information for table ORDERS.INVENTORY

CDD Pathname: SYS$COMMON:[REPOSITORY]CATALOG.INVENTORY;1

Columns for table ORDERS.INVENTORY:
Column Name Data Type Domain
----------- --------- ------
PART_NUMBER SMALLINT ORDERS.PART_NUMBER
PRICE SMALLINT ORDERS.PRICE

.

.

.
SQL> COMMIT;
SQL> EXIT
$!
$! Enter CDO again:
$!
$ REPOSITORY
CDO> !
CDO> ! Verify that the fields PART_NUMBER and PRICE are
cdo> ! in the record INVENTORY:
CDO> !
CDO> SHOW RECORD INVENTORY
Definition of record INVENTORY
| Contains field PART_NUMBER
| Contains field PRICE
CDO> !
CDO> ! Define the fields VENDOR_NAME and QUANTITY. Add them to
CDO> ! the record INVENTORY using the CDO CHANGE RECORD command. Now, the
CDO> ! definitions used by the database no longer match the definitions
CDO> ! in the respository, as the CDO message indicates:
CDO> !
CDO> DEFINE FIELD VENDOR_NAME DATATYPE IS TEXT 20.
CDO> DEFINE FIELD QUANTITY DATATYPE IS WORD.

(continued on next page)

SQL Statements 8–61

INTEGRATE Statement

Example 8–1 (Cont.) Updating the Database File Using Repository
Definitions

CDO> !
CDO> CHANGE RECORD INVENTORY.
CDO> DEFINE VENDOR_NAME.
CDO> END.
CDO> DEFINE QUANTITY.
CDO> END.
CDO> END INVENTORY RECORD.
%CDO-I-DBMBR, database SQL_USER:[PRODUCTION]CATALOG.ORDERS(1) may need
to be INTEGRATED
CDO> !
CDO> ! Use the SHOW RECORD command to see if the fields VENDOR_NAME
CDO> ! and QUANTITY are part of the INVENTORY record:
CDO> !
CDO> SHOW RECORD INVENTORY
Definition of record INVENTORY
| Contains field PART_NUMBER
| Contains field PRICE
| Contains field VENDOR_NAME
| Contains field QUANTITY
CDO> !
CDO> EXIT
$!
$! Enter SQL again:
$!
$ SQL
SQL> !
SQL> ! Use the INTEGRATE . . . ALTER FILES statement to update
SQL> ! the definitions in the database file, using the repository definitions
SQL> ! as the source. Note the INTEGRATE statement implicitly attaches to
SQL> ! the database.
SQL> !
SQL> INTEGRATE DATABASE PATHNAME SYS$COMMON:[REPOSITORY]CATALOG.ORDERS
cont> ALTER FILES;
SQL> !
SQL> ! Use the SHOW TABLE statement to see if the table INVENTORY has
SQL> ! changed. SQL has added the VENDOR_NAME and QUANTITY domains
SQL> ! to the database file:
SQL> !

(continued on next page)

8–62 SQL Statements

INTEGRATE Statement

Example 8–1 (Cont.) Updating the Database File Using Repository
Definitions

SQL> SHOW TABLE INVENTORY
Information for table INVENTORY

CDD Pathname: SYS$COMMON:[REPOSITORY]CATALOG.INVENTORY;1

Columns for table INVENTORY:
Column Name Data Type Domain
----------- --------- ------
PART_NUMBER SMALLINT PART_NUMBER
PRICE SMALLINT PRICE
VENDOR_NAME CHAR(20) VENDOR_NAME
QUANTITY SMALLINT QUANTITY

.

.

.
SQL> COMMIT;
SQL> EXIT

Example 8–2 shows how to update the repository using the database files
as the source by issuing the INTEGRATE statement with the ALTER
DICTIONARY clause. The example starts with the definitions in the repository
matching the definitions in the database file. There is a table in the database
and a record in the repository, both called CUSTOMER_ORDERS. The
CUSTOMER_ORDERS table has four columns based on four domains of
the same name: FIRST_ORDER, SECOND_ORDER, THIRD_ORDER, and
FOURTH_ORDER.

This example adds to the database file a domain called FIFTH_DOM, on which
the local column called FIFTH_ORDER is based. At this point, the database
file and the repository definitions no longer match. The INTEGRATE . . .
ALTER DICTIONARY statement resolves this situation by altering the
repository using the database file definitions as the source.

SQL Statements 8–63

INTEGRATE Statement

Example 8–2 Modifying Repository Definitions Using the INTEGRATE
Statement with the ALTER DICTIONARY Clause

SQL> ! Create the database using the PATHNAME clause:
SQL> !
SQL> CREATE DATABASE FILENAME TEST1
cont> PATHNAME SYS$COMMON:[REPOSITORY]TEST1;
SQL> !
SQL> ! Create domains for the TEST1 database:
SQL> !
SQL> CREATE DOMAIN FIRST_ORDER CHAR(4);
SQL> CREATE DOMAIN SECOND_ORDER CHAR(4);
SQL> CREATE DOMAIN THIRD_ORDER CHAR(4);
SQL> CREATE DOMAIN FOURTH_ORDER CHAR(4);
SQL> CREATE TABLE CUSTOMER_ORDERS
cont> (FIRST_ORDER FIRST_ORDER,
cont> SECOND_ORDER SECOND_ORDER,
cont> THIRD_ORDER THIRD_ORDER,
cont> FOURTH_ORDER FOURTH_ORDER);
SQL> COMMIT;
SQL> DISCONNECT DEFAULT;
SQL> !
SQL> ! Attach to the database with the FILENAME clause so the
SQL> ! repository is not updated:
SQL> !
SQL> ATTACH ’ALIAS TEST1 FILENAME TEST1’;
SQL> !
SQL> ! Use the SHOW TABLE statement to see what columns and domains
SQL> ! are part of the table CUSTOMER_ORDERS:
SQL> !
SQL> SHOW TABLE (COLUMNS) TEST1.CUSTOMER_ORDERS;
Information on table TEST1.CUSTOMER_ORDERS

Columns for table TEST1.CUSTOMER_ORDERS:

Column Name Data Type Domain
----------- --------- ------
FIRST_ORDER CHAR(4) FIRST_ORDER
SECOND_ORDER CHAR(4) SECOND_ORDER
THIRD_ORDER CHAR(4) THIRD_ORDER
FOURTH_ORDER CHAR(4) FOURTH_ORDER

(continued on next page)

8–64 SQL Statements

INTEGRATE Statement

Example 8–2 (Cont.) Modifying Repository Definitions Using the
INTEGRATE Statement with the ALTER DICTIONARY
Clause

SQL> !
SQL> ! Create a new domain called FIFTH_DOM. Add a new
SQL> ! column to the CUSTOMER_ORDERS table called FIFTH_ORDER
SQL> ! and base it on the domain FIFTH_DOM:
SQL> !
SQL> CREATE DOMAIN TEST1.FIFTH_DOM CHAR(4);
SQL> ALTER TABLE TEST1.CUSTOMER_ORDERS ADD FIFTH_ORDER TEST1.FIFTH_DOM;
SQL> !
SQL> ! Check the CUSTOMER_ORDERS table to verify that the column FIFTH_ORDER
SQL> ! was created:
SQL> !
SQL> SHOW TABLE (COLUMNS) TEST1.CUSTOMER_ORDERS;

Information on table TEST1.CUSTOMER_ORDERS

Column Name Data Type Domain
----------- --------- ------
FIRST_ORDER CHAR(4) TEST1.FIRST_ORDER
SECOND_ORDER CHAR(4) TEST1.SECOND_ORDER
THIRD_ORDER CHAR(4) TEST1.THIRD_ORDER
FOURTH_ORDER CHAR(4) TEST1.FOURTH_ORDER
FIFTH_ORDER CHAR(4) TEST1.FIFTH_DOM
SQL> COMMIT;
SQL> EXIT
$!
$! Invoke CDO:
$!
$ REPOSITORY

(continued on next page)

SQL Statements 8–65

INTEGRATE Statement

Example 8–2 (Cont.) Modifying Repository Definitions Using the
INTEGRATE Statement with the ALTER DICTIONARY
Clause

CDO> !
CDO> ! Note that only the database definition for TEST1 appears in the
CDO> ! repository directory:
CDO> !
DIRECTORY

Directory SYS$COMMON:[REPOSITORY]
TEST1(1) CDD$DATABASE
CDO> !
CDO> ! Check the record CUSTOMER_ORDERS. The field FIFTH_ORDER is not part of
CDO> ! the record CUSTOMER_ORDERS. This means that the definitions in the
CDO> ! database file do not match the definitions in the repository.
CDO> !
CDO> !
CDO> SHOW RECORD CUSTOMER_ORDERS FROM DATABASE TEST1
Definition of the record CUSTOMER_ORDERS
| Contains field FIRST_ORDER
| Contains field SECOND_ORDER
| Contains field THIRD_ORDER
| Contains field FOURTH_ORDER
CDO> EXIT
$!
$! Enter SQL again:
$!
$ SQL
SQL> !
SQL> ! To make the definitions in the repository match those in the database
SQL> ! file, use the INTEGRATE statement with the ALTER DICTIONARY clause.
SQL> ! Note that the INTEGRATE statement implicitly attaches to the
SQL> ! database.
SQL> !
SQL> INTEGRATE DATABASE PATHNAME TEST1 ALTER DICTIONARY;
SQL> COMMIT;
SQL> EXIT
$!
$! Enter CDO again:
$!
$ REPOSITORY
CDO> !

(continued on next page)

8–66 SQL Statements

INTEGRATE Statement

Example 8–2 (Cont.) Modifying Repository Definitions Using the
INTEGRATE Statement with the ALTER DICTIONARY
Clause

CDO> ! Use the SHOW RECORD command to verify that the field FIFTH_ORDER is now
CDO> ! part of the record CUSTOMER_ORDERS. Now, the definitions in both the
CDO> ! repository and the database file are the same.
CDO> !
CDO> SHOW RECORD CUSTOMER_ORDERS FROM DATABASE TEST1
Definition of record CUSTOMER_ORDERS
| Contains field FIRST_ORDER
| Contains field SECOND_ORDER
| Contains field THIRD_ORDER
| Contains field FOURTH_ORDER
| Contains field FIFTH_ORDER
CDO> !
CDO> ! Use the ENTER command to make the record (table) CUSTOMER_ORDERS and
CDO> ! its fields (domains) appear in the repository. The ENTER command
CDO> ! assigns a repository directory name to an element.
CDO> !
CDO> ENTER FIELD FIRST_ORDER FROM DATABASE TEST1
CDO> !
CDO> ! Verify that a repository path name was assigned to the field
CDO> ! FIRST_ORDER:
CDO> !
CDO> DIRECTORY
Directory SYS$COMMON:[REPOSITORY]
FIRST_ORDER(1) FIELD
TEST1(1) CDD$DATABASE
CDO> ENTER FIELD SECOND_ORDER FROM DATABASE TEST1

.

.

.
CDO> ENTER FIELD FIFTH_DOM FROM DATABASE TEST1
CDO> !
CDO> ! Now all the domains and tables in TEST1 have been assigned a
CDO> ! repository directory name:
CDO> DIRECTORY

(continued on next page)

SQL Statements 8–67

INTEGRATE Statement

Example 8–2 (Cont.) Modifying Repository Definitions Using the
INTEGRATE Statement with the ALTER DICTIONARY
Clause

Directory SYS$COMMON:[REPOSITORY]
CUSTOMER_ORDERS(1) RECORD
FIFTH_DOM(1) FIELD
FIRST_ORDER(1) FIELD
FOURTH_ORDER(1) FIELD
SECOND_ORDER(1) FIELD
TEST1(1) CDD$DATABASE
THIRD_ORDER(1) FIELD

To store existing database file definitions in the repository for the first time,
use the INTEGRATE statement with the CREATE PATHNAME clause. This
statement builds repository definitions using the database file as the source.

Example 8–3 shows how to store existing database system file definitions in
the repository for the first time. This example first creates a database only in a
database file, not in the repository. Next, the INTEGRATE statement with the
CREATE PATHNAME clause updates the repository with the data definitions
from the database system file.

Example 8–3 Storing Existing Database File Definitions in the Repository

SQL> !
SQL> ! Create a database without requiring the repository (the default)
SQL> ! or specifying a path name:
SQL> !
SQL> CREATE DATABASE ALIAS DOGS;
SQL> !
SQL> ! Now create a table for the breed of dog, poodles. The
SQL> ! columns in the table are types of poodles:
SQL> !
SQL> CREATE TABLE DOGS.POODLES
cont> (STANDARD CHAR(10),
cont> MINIATURE CHAR(10),
cont> TOY CHAR(10));

(continued on next page)

8–68 SQL Statements

INTEGRATE Statement

Example 8–3 (Cont.) Storing Existing Database File Definitions in the
Repository

SQL> !
SQL> ! Use the SHOW TABLE statement to see the table POODLES:
SQL> !
SQL> SHOW TABLE (COLUMNS) DOGS.POODLES
Information on table DOGS.POODLES

Columns for table DOGS.POODLES:
Column Name Data Type Domain
----------- --------- ------
STANDARD CHAR(10)
MINIATURE CHAR(10)
TOY CHAR(10)

SQL> COMMIT;
SQL> EXIT
$!
$! Enter CDO:
$!
$ REPOSITORY
CDO> !
CDO> ! Use the DIRECTORY command to check if the database definition DOGS is
CDO> ! in the repository:
CDO> !
CDO> DIRECTORY
Directory SYS$COMMON:[REPOSITORY]
%CDO-E-NOTFOUND, entity not found in dictionary
CDO> !
CDO> ! DOGS is not in the repository.
CDO> !
CDO> EXIT
$!
$! Enter SQL again:
$!
$ SQL
SQL> !
SQL> ! Use the INTEGRATE statement using the CREATE PATHNAME clause to
SQL> ! update the repository using the DOGS database file:
SQL> !
SQL> INTEGRATE DATABASE FILENAME SQL_USER:[PRODUCTION.ANIMALS]DOGS
cont> CREATE PATHNAME SYS$COMMON:[REPOSITORY]DOGS;
SQL> COMMIT;
SQL> EXIT
$!
$! Enter CDO again:
$!
$ REPOSITORY

(continued on next page)

SQL Statements 8–69

INTEGRATE Statement

Example 8–3 (Cont.) Storing Existing Database File Definitions in the
Repository

CDO> !
CDO> ! Use the DIRECTORY command to check if the database definition DOGS
CDO> ! has been integrated into the repository:
CDO> !
CDO> DIRECTORY
Directory SYS$COMMON:[REPOSITORY]
DOGS(1) CDD$DATABASE
CDO> !
CDO> ! You can also use the SHOW USED_BY command to see
CDO> ! if the record (table) POODLES and the fields (columns)
CDO> ! STANDARD, MINIATURE, and TOY are part of the database
CDO> ! definition DOGS.
CDO> !
CDO> SHOW USED_BY/FULL DOGS
Members of SYS$COMMON:[REPOSITORY]DOGS(1)
| DOGS (Type : CDD$RDB_DATABASE)
| | via CDD$DATABASE_SCHEMA

.

.

.
| SYS$COMMON:[REPOSITORY]CDD$RDB_SYSTEM_METADATA.RDB$CDD_NAME;1(Type : FIELD)
| | | | via CDD$DATA_AGGREGATE_CONTAINS
| | POODLES (Type : RECORD)
| | | via CDD$RDB_DATA_AGGREGATE
| | | STANDARD (Type : FIELD)
| | | | via CDD$DATA_AGGREGATE_CONTAINS
| | | | SQL$10CHR (Type : FIELD)
| | | | | via CDD$DATA_ELEMENT_BASED_ON
| | | MINIATURE (Type : FIELD)
| | | | via CDD$DATA_AGGREGATE_CONTAINS
| | | | SQL$10CHR (Type : FIELD)
| | | | | via CDD$DATA_ELEMENT_BASED_ON
| | | TOY (Type : FIELD)
| | | | via CDD$DATA_AGGREGATE_CONTAINS
| | | | SQL$10CHR (Type : FIELD)
| | | | | via CDD$DATA_ELEMENT_BASED_ON

.

.

.
CDO> EXIT

Example 8–4 shows how to update a repository field using the database
files as the source by issuing the INTEGRATE DOMAIN statement with the
ALTER DICTIONARY clause. The example starts with the definitions in the

8–70 SQL Statements

INTEGRATE Statement

repository matching the definitions in the database file. There is a domain in
the database and a field in the repository, both called DOMTEST.

This example alters the domain in the database file name TESTDB. At this
point, the database file and the repository definitions no longer match. The
INTEGRATE DOMAIN . . . ALTER DICTIONARY statement resolves this
situation by altering the repository using the database file definitions as the
source.

Example 8–4 Modifying Repository Field Using the INTEGRATE DOMAIN
Statement with the ALTER DICTIONARY Clause

SQL> -- Create a database, domain, and table.
SQL> --
SQL> CREATE DATABASE FILENAME TESTDB PATHNAME TESTDB;
SQL> CREATE COLLATING SEQUENCE FRENCH FRENCH;
SQL> CREATE DOMAIN DOMTEST
cont> CHAR(5)
cont> COLLATING SEQUENCE IS FRENCH;
SQL> CREATE DOMAIN TEST_DOM_1
cont> CHAR(1);
SQL> CREATE TABLE TEMP_TAB
cont> (ROW1 CHAR(5),
cont> ROW2 DOMTEST,
cont> ROW3 TEST_DOM_1,
cont> ROW4 INT);
SQL> COMMIT;
SQL> SHOW DOMAIN DOMTEST
DOMTEST CHAR(5)
Collating sequence: FRENCH
SQL> --
SQL> -- Disconnect from the database and invoke Oracle CDD/Repository
SQL> -- user interface and show the field DOMTEST from the TESTDB
SQL> -- database.
SQL> --
SQL> DISCONNECT ALL;
SQL> EXIT
$ CDO
CDO> SHOW FIELD DOMTEST FROM DATABASE TESTDB
Definition of field DOMTEST
| Datatype text size is 5 characters
| Collating sequence ’FRENCH’

(continued on next page)

SQL Statements 8–71

INTEGRATE Statement

Example 8–4 (Cont.) Modifying Repository Field Using the INTEGRATE
DOMAIN Statement with the ALTER DICTIONARY
Clause

CDO> !
CDO> ! Exit from Oracle CDD/Repository and attach to the database by file name
CDO> ! only.
CDO> !
CDO> EXIT
SQL> ATTACH ’FILENAME TESTDB’;
SQL> --
SQL> -- Alter the domain DOMTEST.
SQL> --
SQL> ALTER DOMAIN DOMTEST
cont> CHAR(10)
cont> COLLATING SEQUENCE IS FRENCH;
SQL> COMMIT;
SQL> SHOW DOMAIN DOMTEST
DOMTEST CHAR(10)
Collating sequence: FRENCH
SQL> --
SQL> -- Disconnect from the database and attach by path name only to issue
SQL> -- the INTEGRATE DOMAIN statement.
SQL> --
SQL> DISCONNECT ALL;
SQL> ATTACH ’PATHNAME TESTDB’;
SQL> INTEGRATE DOMAIN DOMTEST ALTER DICTIONARY;
SQL> COMMIT;
SQL> --
SQL> -- Disconnect from the database and invoke Oracle CDD/Repository V6.1
SQL> -- user interface and show the altered field DOMTEST from the TESTDB
SQL> -- database.
SQL> --
SQL> DISCONNECT ALL;
SQL> EXIT
$ CDO
CDO> SHOW FIELD DOMTEST FROM DATABASE TESTDB
Definition of field DOMTEST
| Datatype text size is 10 characters
| Collating sequence ’FRENCH’
| Generic CDD$DATA_ELEMENT_CHARSET is ’0’

8–72 SQL Statements

ITERATE Control Statement

ITERATE Control Statement

Causes the current iteration of the loop to abort and either the next iteration
to start or the loop to terminate; depending on the termination conditions.

Environment

You can use the ITERATE control statement in a compound statement of a
multistatement procedure:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

ITERATE
<statement-label>

Arguments

statement-label
Names the label assinged to a compound statement or a loop statement.

Usage Notes

• The statement label must be for an active iterative loop statement.
Iterative loop statements include LOOP, FOR cursor loop, FOR counted
loop, WHILE, and REPEAT statements. An exception is raised if the
specified label is unknown, not active, or is not a label for an iterative
statement.

• If the statement label is omitted, then the innermost iterate statement
is used by default. An exception is raised if there is no active iterative
statement.

SQL Statements 8–73

ITERATE Control Statement

Example

Example 1: Using the ITERATE Control Statement

The following example shows the ITERATE control statement being used to
prematurely complete the processing of the current row in a FOR cursor loop:

SQL> BEGIN
cont> FOR :ord AS TABLE CURSOR ord_cursor
cont> AS SELECT * FROM orders WHERE customer_id = :cid
cont> DO
cont> IF stock_count (:ord.product_id, :ord.quantity) IS NULL THEN
cont> ITERATE;
cont> END IF;
cont> -- transfer stock to this order
cont> UPDATE stock SET on_hand = on_hand - :ord.quantity
cont> WHERE product_id = :ord.product_id;
cont> UPDATE orders SET :ord.available = :ord.quantity
cont> WHERE CURRENT OF ord_cursor;
cont> END FOR;
cont> END;

8–74 SQL Statements

LEAVE Control Statement

LEAVE Control Statement

Unconditionally ends execution within a compound statement block or
a looping statement but resumes execution on any SQL statement that
immediately follows the exited statement.

Environment

You can use the LEAVE control statement in a compound statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

leave-statement =

LEAVE
<statement-label>

Arguments

statement-label
Names the label assinged to a compound statement, loop statement, or
multistatement procedure.

Usage Notes

• The LEAVE statement can specify the name of the procedure if the
compound statement it contains is not labeled. See Compound Statement
for more information.

• If the statement-label is omitted, then the LEAVE statement leaves the
currently active loop statement (WHILE, LOOP, REPEAT, FOR cursor loop,
FOR counted loop); otherwise, it leaves the current labeled statement. If
there is no active loop or labeled statement, then the current procedure is
terminated.

SQL Statements 8–75

LEAVE Control Statement

• Do not use the LEAVE statement to leave SQL functions. A function must
have a return result. You will receive a run-time error if you attempt
to terminate a function with the LEAVE statement. Use the RETURN
statement instead.

Examples

Example 1: Using the LEAVE control statement within a loop

SQL> set flags ’trace’;
SQL>
SQL> create module REPORTS
cont> /*
***> This procedure counts the employees of a given state
***> who have had a decrease in their salary during their
***> employment
***> */
cont> procedure COUNT_DECREASED
cont> (in :state CHAR(2)
cont> ,inout :n_decreased INTEGER);
cont> begin
cont> set :n_decreased = 0;
cont>
cont> EMP_LOOP:
cont> for :empfor
cont> as each row of
cont> select employee_id
cont> from EMPLOYEES where state = :state
cont> do
cont> begin
cont> declare :last_salary INTEGER (2) default 0;
cont>
cont> HISTORY_LOOP:
cont> for :salfor
cont> as each row of
cont> select salary_amount
cont> from SALARY_HISTORY
cont> where employee_id = :empfor.employee_id
cont> order by salary_start
cont> do
cont> if :salfor.salary_amount < :last_salary
cont> then
cont> set :n_decreased = :n_decreased + 1;
cont> trace :empfor.employee_id, ’: ’, :salfor.salary_amount;
cont> leave HISTORY_LOOP;
cont> end if;
cont>
cont> set :last_salary = :salfor.salary_amount;
cont> end for;
cont> end;

8–76 SQL Statements

LEAVE Control Statement

cont> end for;
cont> end;
cont>
cont> end module;
SQL>
SQL> declare :n integer;
SQL> call COUNT_DECREASED (’NH’, :n);
~Xt: 00200: 40789.00
~Xt: 00248: 46000.00
~Xt: 00471: 52000.00

N
3

SQL>
SQL> rollback;

Example 2: Ending Execution of a Compound Statement

PROCEDURE SAMPLE (IN :ID MONEY);
BEGIN
DECLARE: AMOUNT MONEY

(SELECT TOTAL_AMOUNT FROM M_TABLE);
LOOP

IF :AMOUNT IS NULL THEN
LEAVE;

END IF;
.
.
.
SET :AMOUNT =:AMOUNT-100.00;
IF :AMOUNT < 0.00 THEN

LEAVE;
END IF;

END LOOP;
END;

SQL Statements 8–77

LOCK TABLE Statement

LOCK TABLE Statement

Specifies a list of tables to be readied in a given lock mode and added to the
list of reserved tables for the current transaction. If a view is specified, then
the base tables referenced by the view are locked in the specified lock mode.

Environment

You can use the LOCK TABLE statement in a compound statement of a
multistatement procedure:

• In interactive SQL

• Embedded in host language programs

• As part of a procedure in an SQL module or other compound statement

• In dynamic SQL as a statement to be dynamically executed

Format

LOCK TABLE <table-name> FOR lock-mode MODE
, IN

,

NOWAIT
WAIT

DEFAULT

lock-mode =

SHARED DATA DEFINITION
PROTECTED READ
EXCLUSIVE WRITE

Arguments

DATA DEFINITION
READ
WRITE
See the SET TRANSACTION statement for a description of these arguments.

8–78 SQL Statements

LOCK TABLE Statement

IN lock-mode MODE
FOR lock-mode MODE
Specifies the lock mode to be used for the specified tables and views. The IN
and FOR keywords are synonymous. A table lock mode can be promoted, but
cannot be demoted. For example, you can promote a SHARED READ lock
to SHARED WRITE, but you cannot demote a SHARED WRITE mode to a
SHARED READ mode. See the Usage Notes for information on how the LOCK
TABLE statement interacts with the SET TRANSACTION and DECLARE
TRANSACTION statements.

SHARED
PROTECTED
EXCLUSIVE
See the SET TRANSACTION statement for a description of these arguments.

table-name
The names of one or more tables or views currently existing in the database
that you want to lock and reserve. You can specify tables created as GLOBAL
or LOCAL TEMPORARY TABLES, but they will be ignored because these
types of tables do not contain shared data and so are never locked. You can
specify tables from multiple databases by using the alias name as a prefix to
the table name. If you do not specify an alias, then the default alias is used.

WAIT
NOWAIT
DEFAULT WAIT
Specifies what the LOCK TABLE statement does when it encounters a locked
table. If you specify WAIT, the statement waits for other transactions to
complete and then proceeds. If you specify NOWAIT, your transaction returns
an error message when it encounters a locked table. If you specify DEFAULT
WAIT, then the lock mode specified for the current transaction is used. If you
specify a different lock mode than was specified for the transaction, the mode
you specify with the LOCK TABLE statement takes precedence, unless the
table is already reserved.

The WAIT clause is the default.

SQL Statements 8–79

LOCK TABLE Statement

Usage Notes

• The LOCK TABLE statement has a definite advantage over the SET
TRANSACTION RESERVING clause. It allows tables to be locked at
modes other than SHARED READ when the table access is not determined
until run time. For example, complex or dynamic applications often do not
know the names of tables that will be accessed at the time a transaction is
started. The LOCK TABLE statement allows those applications to start a
transaction and add tables later, as they become known.

• If you start a transaction with a SET TRANSACTION or DECLARE
TRANSACTION statement that includes the RESERVING clause, then all
tables referenced during that transaction must have been specified in the
reserving list of that transaction or subsequently with a LOCK TABLE
statement. Exceptions to this rule are temporary tables and tables that
are referenced by constraints and triggers. These tables are automatically
reserved according to their access characteristics. For example, constraints
require read access, triggers may require write access, and temporary
tables require no special locking.

• If you start a transaction without specifying a list of reserved tables, then
you can reference any tables during the transaction. By default, they will
be accessed for SHARED READ or SHARED WRITE depending on the type
of access statement issued. You can use the LOCK TABLE statement to
adjust the default locking behavior as needed by the transaction.

• When you use multiple LOCK TABLE statements in a transaction, the
tables can be reserved in any order and at any time, as you desire.
However, this may lead to deadlocks in concurrent environments. Careful
design can eliminate or minimize this problem. (Contrast this with
the behavior seen when you use the SET TRANSACTION statement
with the RESERVING clause. In this case, the tables are reserved
using the order specified by the RDB$RELATION_ID column of the
RDB$RELATION system relation so that a consistent ordering is used
across every application. This avoids or eliminates deadlocks during table
reservation.)

• If you issue a LOCK TABLE statement when no transaction is active, then
a default transaction is started implicitly.

• The locks placed on tables by the LOCK TABLE statement are released
when the transaction is terminated with a COMMIT, ROLLBACK, or
DISCONNECT statement.

8–80 SQL Statements

LOCK TABLE Statement

Examples

Example 1: Locking a Table in READ MODE

SQL> LOCK TABLE EMPLOYEES IN PROTECTED READ MODE NOWAIT;

Example 2: Locking Two Tables in Different Modes

SQL> LOCK TABLE DB1.JOB_HISTORY IN SHARED WRITE MODE,
cont> DB2.SALARY_HISTORY IN EXCLUSIVE WRITE MODE;

SQL Statements 8–81

LOOP Control Statement

LOOP Control Statement

Allows the repetitive execution of one or more SQL statements in a compound
statement.

See also the FOR, REPEAT and WHILE statements.

Environment

You can use the LOOP control statement only within a compound statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

loop-statement =

<beginning-label> :

LOOP compound-use-statement

END LOOP
<ending-label>

8–82 SQL Statements

LOOP Control Statement

compound-use-statement =

call-statement ;
commit-statement
control-statement
delete-statement
get-diagnostics-statement
insert-statement
lock-table-statement
rollback-statement
set-transaction-statement
singleton-select-statement
start-transaction-statement
trace-statement
update-statement

Arguments

beginning-label:
Assigns a name to a control loop. A beginning label used with the LEAVE
statement lets you perform a controlled exit from a loop. A named loop is
called a labeled loop statement. If you include an ending label, it must
be identical to its corresponding beginning label. A beginning label must be
unique within the procedure in which the label is contained.

compound-use-statement
Identifies the SQL statements allowed in a compound statement block. See the
Compound Statement for the list of valid statements.

END LOOP ending-label
Marks the end of a control loop. If you choose to include the optional ending
label, it must match exactly its corresponding beginning label. An ending label
must be unique within the procedure in which the label is contained.

The optional end-label argument makes multistatement procedures easier to
read, especially in very complex multistatement procedure blocks.

LOOP
Marks the start of a control loop. A LOOP statement enables you to execute
the associated sequence of SQL statements called a compound statement.
After SQL executes the statements within the loop, control returns to the
LOOP statement at the top of the loop for subsequent statement execution.
Looping occurs until SQL encounters an error exception or executes a LEAVE
statement. In either case, SQL passes control out of the LOOP block to the
statement immediately after the LOOP statement.

SQL Statements 8–83

LOOP Control Statement

Usage Note

LOOP will iterate indefinitely unless an exit condition is included.

Examples

Example 1: Executing a loop statement

SQL> create table ENROLLMENTS
cont> (last_name char(20),
cont> first_name char(10),
cont> middle_initial char,
cont> class_name char(10));
SQL>
SQL> begin
cont> declare :n integer default 5;
cont> loop
cont> insert into ENROLLMENTS
cont> values (’Jones’, ’Robert’, ’A’,
cont> ’Class ’ || CAST(:n as char(1)));
cont> set :n = :n - 1;
cont> if :n <= 0 then
cont> leave;
cont> end if;
cont> end loop;
cont> end;
SQL>
SQL> select * from ENROLLMENTS;
LAST_NAME FIRST_NAME MIDDLE_INITIAL CLASS_NAME
Jones Robert A Class 5
Jones Robert A Class 4
Jones Robert A Class 3
Jones Robert A Class 2
Jones Robert A Class 1
5 rows selected
SQL>

8–84 SQL Statements

OPEN Statement

OPEN Statement

Opens a cursor so that rows of its result table can be retrieved through FETCH
statements. The OPEN statement places the cursor before the first row of its
result table.

Environment

You can use the OPEN statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

Format
OPEN <cursor-name>

<parameter> USING <parameter>
<qualified-parameter>

,
USING DESCRIPTOR <descriptor-name>

Arguments

cursor-name
parameter
Specifies the name of the cursor you want to open. Use a parameter if the
cursor referred to by the cursor name was declared at run time with a dynamic
DECLARE CURSOR statement. Specify the parameter used for the cursor
name in the extended dynamic DECLARE CURSOR statement.

You can use a parameter to refer to the cursor name only when the OPEN
statement refers to an extended dynamic cursor.

USING parameter
USING qualified-parameter
USING DESCRIPTOR descriptor-name
Specifies in dynamic SQL parameters (host language variables in a precompiled
OPEN statement or formal parameters in an OPEN statement that is part of
an SQL module language procedure) or qualified parameters (structures)
whose values SQL uses to replace parameter markers in a prepared SELECT

SQL Statements 8–85

OPEN Statement

statement named in the cursor declaration. These parameters are not for use
in interactive SQL. SQL replaces the parameter markers with the values of
the host language variables when it evaluates the SELECT statement of the
cursor. See Chapter 3 and Chapter 4 for more information on the SQL module
language and the SQL precompiler, respectively.

You must specify the USING clause when both of the following conditions exist:

• The declaration of the cursor you are opening specifies a prepared SELECT
statement name.

• The statement string for the prepared SELECT statement includes
parameter markers.

SQL does not allow the USING clause in an OPEN statement for a cursor
that is not based on a prepared SELECT statement. For more information on
parameter markers, see the PREPARE Statement, and the chapter on dynamic
SQL in the Oracle Rdb Guide to SQL Programming.

There are two ways to specify parameters in a USING clause:

• With a list of parameters. The number of parameters in the list must be
the same as the number of parameter markers in the prepared SELECT
statement. (If any of the parameters in an OPEN statement is a host
structure, SQL counts the number of variables in that structure when it
compares the number of parameters in the USING clause with the number
of parameter markers in the prepared SELECT statement.)

• With the name of a descriptor that corresponds to an SQLDA. Specify the
name of the descriptor in the USING DESCRIPTOR clause. If you use
the INCLUDE statement to insert the SQLDA into your program, the
descriptor name is simply SQLDA.

The SQLDA is a collection of variables used only in dynamic SQL. In
an OPEN statement, the SQLDA points to a number of host language
variables with which SQL replaces the parameter markers in a prepared
SELECT statement. The number of variables must match the number of
parameter markers.

The data types of host language variables must be compatible with the values
of the corresponding column of the cursor row.

8–86 SQL Statements

OPEN Statement

Usage Notes

• SQL does not restrict how many cursors you can have open at once. It is
valid to declare and open more than one cursor at a time.

• An open table cursor can be positioned:

Before a row of its result table. When it executes an OPEN statement,
SQL positions the cursor before the first row. When SQL executes a
DELETE statement that refers to a cursor, SQL positions the cursor
before the row immediately following the deleted row.

On a row of its result table (after a FETCH statement for any but the
last row).

After the last row of its result table. When the cursor is positioned
on the last row, any FETCH or DELETE statement from the cursor
positions the cursor after the last row.

• You cannot open a cursor until it has been declared in a DECLARE
CURSOR statement.

• If you issue an OPEN statement for a cursor that is already open, SQL
generates an error message. The OPEN statement has no effect on the
cursor.

• SQL evaluates any parameters in the select expression of a DECLARE
CURSOR statement when it executes the OPEN statement for the cursor.
SQL will not evaluate the parameters again until you close and then open
the cursor again.

• An open list cursor can be positioned:

Before an element of a list. When it executes an OPEN statement, SQL
positions the cursor before the first element.

On an element of the list (after a FETCH statement for any but the
last element).

After the last element of its result table. When the cursor is positioned
on the last element, any FETCH statement from the cursor positions
the cursor after the last element.

• When you open a list cursor, the table cursor that provides the row context
must be open and positioned on a row.

SQL Statements 8–87

OPEN Statement

Examples

Example 1: Opening a cursor declared in a PL/I program

This program fragment uses embedded DECLARE CURSOR, OPEN, and
FETCH statements to retrieve and print the name and department of
managers. The OPEN statement places the cursor at the beginning of rows to
be fetched.

/* Declare the cursor: */
EXEC SQL DECLARE MANAGER CURSOR FOR

SELECT E.FIRST_NAME, E.LAST_NAME, D.DEPARTMENT_NAME
FROM EMPLOYEES E, DEPARTMENTS D
WHERE E.EMPLOYEE_ID = D.MANAGER_ID ;

/* Open the cursor: */
EXEC SQL OPEN MANAGER;

/* Start a loop to process the rows of the cursor: */
DO WHILE (SQLCODE = 0);

/* Retrieve the rows of the cursor
and put the value in host language variables: */
EXEC SQL FETCH MANAGER INTO :FNAME, :LNAME, :DNAME;
/* Print the values in the variables: */

.

.

.
END;

/* Close the cursor: */
EXEC SQL CLOSE MANAGER;

Example 2: Opening a cursor to insert list data

The following interactive SQL example uses cursors to add a new row to the
RESUMES table of the sample personnel database:

SQL> DECLARE TBLCURSOR INSERT ONLY TABLE CURSOR FOR
cont> SELECT EMPLOYEE_ID, RESUME FROM RESUMES;
SQL> DECLARE LSTCURSOR INSERT ONLY LIST CURSOR FOR
cont> SELECT RESUME WHERE CURRENT OF TBLCURSOR;
SQL> OPEN TBLCURSOR;
SQL> INSERT INTO CURSOR TBLCURSOR (EMPLOYEE_ID)
cont> VALUES ("00167");
1 row inserted

8–88 SQL Statements

OPEN Statement

SQL> OPEN LSTCURSOR;
SQL> INSERT INTO CURSOR LSTCURSOR
cont> VALUES ("This is the resume for 00167");
SQL> INSERT INTO CURSOR LSTCURSOR
cont> VALUES ("Boston, MA");
SQL> INSERT INTO CURSOR LSTCURSOR
cont> VALUES ("Oracle Corporation");
SQL> CLOSE LSTCURSOR;
SQL> CLOSE TBLCURSOR;
SQL> COMMIT;

SQL Statements 8–89

Operating System Invocation ($) Statement

Operating System Invocation ($) Statement

Gives access to the operating system command line environment from within
SQL.

The dollar sign ($) tells SQL to spawn a subprocess and pass the rest of the
line to the operating system for processing. You must follow the dollar sign
with an operating system command. After the operating system processes the
command, it logs out of the subprocess process and returns control to SQL.

Environment

You can invoke operating system commands only in interactive SQL.

Format

$ operating-system-command

Arguments

operating-system-command
Specifies a valid operating system command.

Usage Notes

• Because SQL spawns a subprocess to execute the operating system
command, you cannot use the dollar sign command to create logical names
that affect the current interactive session. For instance, you cannot use the
dollar sign command to change the value of the SQL$DATABASE logical.

• Interactive SQL interprets any command line that begins with a dollar sign
($) as the start of an operating system command line. This is true even if
the dollar sign is a continuation of a string literal from the previous line,
which can lead to confusing results.

SQL> INSERT INTO EMPLOYEES (CITY) VALUES("DollarSign -
cont> $City")
%DCL-W-IVVERB, unrecognized command verb - check validity and spelling
\CITY");\
cont> ;
%SQL-F-UNTSTR, Unterminated string found
SQL>

8–90 SQL Statements

Operating System Invocation ($) Statement

Examples

Example 1: Using the DCL DIRECTORY command from within SQL

SQL> $ DIRECTORY *.SQL

Directory DISK2:[DEPT3.ACCT]

DEFPRO.SQL;6 NOTEQUAL.SQL;1 QUERY.SQL;1 REFEXAM.SQL;12
STORE.SQL;1 UPDATE.SQL;2

Total of 6 files.
SQL>

SQL Statements 8–91

PREPARE Statement

PREPARE Statement

Prepares an SQL statement dynamically generated by a program for execution,
and assigns a name to that statement.

Dynamic SQL lets programs accept or generate SQL statements at run time, in
contrast to SQL module language procedures. Unlike precompiled SQL or SQL
module language statements, such dynamically executed SQL statements are
not necessarily part of a program’s source code, but can be generated while the
program is running. Dynamic SQL is useful when you cannot predict the type
of SQL statement your program will need to process.

The PREPARE . . . INTO statement stores in the SQLDA the number and data
types of any select list items of a prepared statement. The SQLDA provides
information about dynamic SQL statements to the program and information
about memory allocated by the program to SQL.

Appendix D describes in more detail the specific fields of the SQLDA, and how
programs use it to communicate about select list items in prepared statements.

Environment

You can use the PREPARE statement:

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

Format

PREPARE <statement-name>
<statement-id-parameter>

SELECT LIST INTO <descriptor-name>

FROM ’ <statement-string> ’
<parameter>

8–92 SQL Statements

PREPARE Statement

Arguments

descriptor-name
Specifies the name of a structure declared in the host program as an SQLDA
to which SQL writes information about select list items. Precompiled programs
can use the embedded SQL statement INCLUDE SQLDA to automatically
insert a declaration of an SQLDA structure, called SQLDA, in the program
when it precompiles the program. Programs that use the SQL module
language must explicitly declare an SQLDA. Either precompiled or SQL
module language programs can explicitly declare additional SQLDAs, but
must declare them with unique names. For sample declarations of SQLDA
structures, see Appendix D.3.

FROM statement-string
FROM parameter
Specifies the SQL statement to be prepared for dynamic execution. You either
specify the statement string directly enclosed in single quotation marks, or in
a parameter (a host language variable in a precompiled PREPARE statement
or a formal parameter in a PREPARE statement that is part of an SQL module
language procedure) that contains the statement string.

Whether specified directly or by a parameter, the statement string must be
a character string that is a dynamically executable SQL statement. (See
the Usage Notes for a list of the SQL statements that can be dynamically
executed.) If you specify the statement string directly, the maximum length
is 1,024 characters. If you specify the statement string as a parameter, the
maximum length of the statement string is 65,535 characters.

The form for the statement is the same as for embedded SQL statements,
except that:

• You must not begin the string with EXEC SQL.

• In places where SQL allows host language variables in an embedded
statement, you must specify parameter markers instead.

If you try to prepare an invalid statement, you will find a value in the
SQLCODE, the SQLCODE field of the SQLCA, or the SQLSTATE status
parameter indicating an error.

The values returned to the SQLCODE field are described in Appendix C. Check
the message vector to see which error message was returned. If necessary,
refer to the error message explanations and user actions located by default in
the SQL HELP ERRORS.

SQL Statements 8–93

PREPARE Statement

Parameter markers are question marks (?) that denote parameters in the
statement string of a PREPARE statement. Parameter markers are replaced
by values in parameters or dynamic memory when the prepared statement is
executed by an EXECUTE or OPEN statement.

SELECT LIST INTO
Specifies that SQL writes information about the number and data type of select
list items in the statement string to the SQLDA. The SELECT LIST keywords
clarify the effect of the INTO clause and are optional.

Using the SELECT LIST clause in a PREPARE statement is an alternative
to issuing a separate DESCRIBE . . . INPUT statement. See the DESCRIBE
Statement for more information.

The SELECT LIST clause in a PREPARE statement is deprecated syntax. For
more information about deprecated syntax, see Appendix F.

Note

The PREPARE statement LIST keyword is not related to the LIST data
type or list cursors.

statement-name
statement-id-parameter
Identifies the prepared version of the SQL statement specified in the FROM
clause. Depending on the type of SQL statement prepared, DESCRIBE,
EXECUTE, and dynamic DECLARE CURSOR statements can refer to the
statement name assigned in a PREPARE statement.

You can supply either a parameter or a compile-time statement name.
Specifying a parameter lets SQL supply identifiers to programs at run time.
Use an integer parameter to contain the statement identifier returned by SQL,
or a character string parameter to contain the name of the statement that you
pass to SQL.

A single set of dynamic SQL statements (PREPARE, DESCRIBE, EXECUTE,
Extended Dynamic DECLARE CURSOR) can handle any number of
dynamically executed statements. If you decide to use parameters, statements
that refer to the prepared statement (DESCRIBE, EXECUTE, extended
dynamic DECLARE CURSOR) must also use a parameter instead of the
explicit statement name.

Refer to the DECLARE CURSOR Statement, Dynamic for an example
demonstrating the PREPARE statement used with a dynamic DECLARE
CURSOR statement.

8–94 SQL Statements

PREPARE Statement

Usage Notes

• The PREPARE statement sets values in the SQLCA to report the number
of input and number of output parameters for a statement. These values
allow memory to be allocated for input and output SQLDA structures.

Assuming that the SQLERRD array is zero based, SQL sets SQLERRD[2]
to the count of output parameters, and SQLERRD[3] to the count of input
parameters. The values can be zero; CALL parameters of INOUT type will
appear in both the input and output count.

Because the SQLCA was not set prior to Oracle Rdb release 7.1.3, Oracle
recommends that the SQLERRD[2] and SQLERRD[3] values be set to a
known value (such as -1) prior to the PREPARE call. If the values remain
as -1, the application must estimate the counts itself.

• Some statements, such as INSERT and DELETE, return a count of the
number of rows (on which the statement operated) in the SQLERRD[2]
field of the SQLCA. To take advantage of this behavior, you must prepare
the statement using the SQLCA as the status parameter. For more
information about the SQLERRD[2] field, see Appendix C.

• You can execute the same prepared statement many times. However, if a
statement to be dynamically executed does not contain select list items or
parameter markers, and your program needs to execute it only once, you
can use the EXECUTE IMMEDIATE statement to prepare and execute the
statement in one step.

• The PREPARE . . . SELECT LIST form of the PREPARE statement,
besides preparing a statement for execution, also stores information about
the number and data type of select list items in the SQLDA. However, no
form of the PREPARE statement corresponds to a DESCRIBE . . . INPUT
statement. To store information about parameter markers in the SQLDA,
you must use the DESCRIBE . . . INPUT statement.

To use the SQLDA, host languages must support pointer variables that
provide indirect access to storage by storing the address of data instead of
directly storing data in the variable. The languages supported by the SQL
precompiler that also support pointer variables are Ada, C, and PL/I. Any
other language that supports pointer variables can use the SQLDA, but
must call SQL module procedures that contain SQL statements instead of
embedding the SQL statements directly in source code.

SQL Statements 8–95

PREPARE Statement

• If you use the statement-id-parameter, you will see one of the following
behaviors:

If the statement-id is non-zero and does not match any prepared
statement (the id was stale or contained a random value), then an error
is raised:

%SQL-F-BADPREPARE, Cannot use DESCRIBE or EXECUTE on a statement that is not prepared

If the statement-id is non-zero, or the statement name is one that has
previously been used and matches an existing prepared statement, then
that statement is automatically released prior to the prepare of the
new statement. Refer to the RELEASE Statement for further details.

If the statement-id is zero or was automatically released, then a new
statement-id is allocated and the statement prepared.

If you use statement-name instead of a statement-id-parameter then SQL
will implicitly declare an id for use by the application. Therefore, the
semantics described apply similarly when using the statement-name. See
the RELEASE Statement for details.

• When you issue the EXECUTE statement for a previously prepared
statement, you may be interested in obtaining information beyond the
success or failure code returned in the SQLCODE status parameter. For
example, you may want to know how many rows were affected by the
execution of a DELETE or UPDATE statement. If you use an SQLCA
status parameter, you can access this type of information.

However, if you use an SQLCA parameter when you execute a prepared
statement, you must first have used an SQLCA parameter when you
prepared that statement. For example, using SQL module language
calls from C, your code might look like the following where the SQLCA
parameter is passed to both procedures:

static struct SQLCA sqlca;
/* ... */
PREPARE_STMT(&sqlca, statement, &stmt_id);
/* ... */
EXECUTE_STMT(&sqlca, &stmt_id);

• You cannot dynamically execute all statements that SQL allows you to
embed in a precompiled program or make part of an SQL module language
procedure. Statements you cannot dynamically execute are:

CLOSE

DECLARE CURSOR

DECLARE STATEMENT

8–96 SQL Statements

PREPARE Statement

DECLARE TABLE

DESCRIBE

EXECUTE

FETCH

INCLUDE

OPEN

PREPARE

RELEASE

WHENEVER

Table 8–1 lists SQL statements that can be dynamically executed. It also
shows whether the statements can have parameter markers or select list
items that may have to be processed, and lists the associated nondynamic SQL
statements used to process the statement dynamically.

Table 8–1 SQL Statements That Can Be Dynamically Executed

Statement That Can Be
Dynamically Executed

Parameter
Markers
Allowed?

Select
List
Items?

Associated Dynamic SQL
Statements

SELECT (general form) Yes Yes PREPARE
Dynamic DECLARE
CURSOR
Extended dynamic
DECLARE CURSOR
DESCRIBE (optional)
OPEN
FETCH
CLOSE
RELEASE (optional)

(continued on next page)

SQL Statements 8–97

PREPARE Statement

Table 8–1 (Cont.) SQL Statements That Can Be Dynamically Executed

Statement That Can Be
Dynamically Executed

Parameter
Markers
Allowed?

Select
List
Items?

Associated Dynamic SQL
Statements

DELETE
INSERT
UPDATE
SET statements

Yes No PREPARE
DESCRIBE (optional)
EXECUTE
EXECUTE IMMEDIATE (if
no parameter markers)
RELEASE (optional)

Compound statement
SELECT . . . INTO
INSERT . . . RETURNING
INTO
UPDATE . . . RETURNING
INTO

Yes Yes PREPARE
DESCRIBE (optional)
EXECUTE
EXECUTE IMMEDIATE (if
no parameter markers)
RELEASE (optional)

ALTER
ATTACH
DECLARE TRANSACTION

CREATE
COMMENT ON
COMMIT
DROP
GRANT
RENAME
REVOKE
ROLLBACK
SET TRANSACTION
START TRANSACTION
TRUNCATE

No No PREPARE
EXECUTE
EXECUTE IMMEDIATE
RELEASE (optional)

Examples

Example 1: Preparing an INSERT statement with parameter markers

8–98 SQL Statements

PREPARE Statement

This PL/I program illustrates using a PREPARE statement to prepare an
INSERT statement for dynamic execution. Because the statement string stored
in COMMAND_STRING has parameter markers, the program needs to assign
values to host language variables that will be substituted for the parameter
markers during dynamic execution.

In this case, a DESCRIBE statement writes information about the parameter
markers to the SQLDA and the program writes the addresses of the variables
to the SQLDA. The program stores values in the variables and an EXECUTE
statement substitutes the values for the parameter markers in the INSERT
statement using the addresses in the SQLDA.

To shorten the example, this program is simplified:

• The program includes the INSERT statement as part of the program source
code. A program with such coded SQL statements does not need to use
dynamic SQL at all, but can simply embed the INSERT statement directly
in the program. A program that must process SQL statements generated
as it executes is the only type of program that requires dynamic SQL.

• The program declares host language variables for the parameter markers
without first checking the SQLDA for their description. Typically, an
application needs to look in the SQLDA to determine the number and
data type of parameter markers in the statement string before allocating
memory for them.

PREP_INTO: procedure options(main);
/*
* Illustrate a dynamic INSERT statement
* with parameter markers:
*/
declare FILESPEC char(20),

EMP_ID CHAR(5),
FNAME CHAR(10),
LNAME CHAR(14),
CITY CHAR(20),
COMMAND_STRING char(256);

/* Declare communication area (SQLCA)
* and descriptor area (SQLDA): */
EXEC SQL INCLUDE SQLDA;
EXEC SQL INCLUDE SQLCA;

/* Declare the database: */
EXEC SQL DECLARE SCHEMA RUNTIME FILENAME :FILESPEC;

SQL Statements 8–99

PREPARE Statement

/*
*
* procedure division
*
*/

/*
* Assign values to FILESPEC and COMMAND_STRING,
* and allocate memory for the SQLDA:
*/
FILESPEC = ’SQL$DATABASE’;
COMMAND_STRING =

’INSERT INTO EMPLOYEES
(EMPLOYEE_ID, FIRST_NAME, LAST_NAME, CITY)
VALUES (?,?,?,?)’;

SQLSIZE = 10;
ALLOCATE SQLDA SET (SQLDAPTR);
SQLN = 10;

/*
* Prepare the statement assigned to COMMAND_STRING:
*/
EXEC SQL PREPARE STMT3

FROM COMMAND_STRING;

/* Use a DESCRIBE statement to write information
* about the parameter markers in the statement string
* to the SQLDA:
*/
EXEC SQL DESCRIBE STMT3 MARKERS INTO SQLDA;

/* Assign values to the variables: */
EMP_ID = ’99999’;
FNAME = ’Bob’;
LNAME = ’Addams’;
CITY = ’Francestown’;

/*
* Assign the addresses of the variables to the SQLDATA field
* of the SQLDA:
*/

SQLDATA(1) = ADDR(EMP_ID);
SQLDATA(2) = ADDR(FNAME);
SQLDATA(3) = ADDR(LNAME);
SQLDATA(4) = ADDR(CITY);

/* Execute STMT3:*/
EXEC SQL EXECUTE STMT3 USING DESCRIPTOR SQLDA;

8–100 SQL Statements

PREPARE Statement

/*
* Display the contents of table S to make sure
* it has the proper contents and clean it up:
*/
CALL DUMP_S;
EXEC SQL DELETE FROM EMPLOYEES WHERE EMPLOYEE_ID = "99999";
EXEC SQL COMMIT WORK;
RETURN;

DUMP_S: PROC;
EXEC SQL DECLARE X CURSOR FOR SELECT

EMPLOYEE_ID, FIRST_NAME, LAST_NAME, CITY
FROM EMPLOYEES WHERE EMPLOYEE_ID = "99999";

/*
* Declare a structure to hold values of rows from the table:

*/
DCL 1 S,

2 EMP_ID CHAR(5),
2 FNAME CHAR(10),
2 LNAME CHAR(14),
2 CITY CHAR(20);

/* Declare indicator vector for the preceding structure: */
DCL S_IND (4) FIXED(15) BIN;

PUT EDIT (’Dump the contents of S’) (SKIP, SKIP, A);
EXEC SQL OPEN X;
EXEC SQL FETCH X INTO :S:S_IND;
DO WHILE (SQLCODE = 0);

PUT EDIT (S_IND(1), ’ ’, S.EMP_ID, ’ ’) (SKIP, F(6), A, A, A);
PUT EDIT (S_IND(2), ’ ’, S.FNAME, ’ ’) (F(6), A, A, A);
PUT EDIT (S_IND(3), ’ ’, S.LNAME, ’ ’) (F(6), A, A, A);
PUT EDIT (S_IND(4), ’ ’, S.CITY) (F(6), A, A);
EXEC SQL FETCH X INTO :S:S_IND;

END;
EXEC SQL CLOSE X;
RETURN;
END DUMP_S;

END PREP_INTO;

Example 2: Showing the effect of the SQLCA support.

#include <stdio.h>
#include <sql_rdb_headers.h>

exec sql
declare alias filename ’db$:mf_personnel’;

exec sql
include SQLCA;

char * s1 = "begin insert into work_status values (?, ?, ?);\
select count(*) into ? from work_status; end";

SQL Statements 8–101

PREPARE Statement

void main ()
{
int i;
SQLCA.SQLERRD[2] = SQLCA.SQLERRD[3] = 1;
exec sql

prepare stmt from :s1;
if (SQLCA.SQLCODE != 0) sql_signal ();
printf("SQLCA:\n SQLCODE: %9d\n", SQLCA.SQLCODE);
for (i = 0; i < 6; i++)

printf(" SQLERRD[%d]: %9d\n", i, SQLCA.SQLERRD[i]);
}

The results below show that there are three input arguments and one output
argument.

SQLCA:
SQLCODE: 0
SQLERRD[0]: 0
SQLERRD[1]: 0
SQLERRD[2]: 1
SQLERRD[3]: 3
SQLERRD[4]: 0
SQLERRD[5]: 0

8–102 SQL Statements

PRINT Statement

PRINT Statement

Displays a message in interactive SQL.

Environment

You can use the PRINT statement in interactive SQL.

Format

PRINT <literal>
<variable> AS <name>

edit-using-clause
,

edit-using-clause =

EDIT USING edit-string
<domain-name>

Arguments

AS name
Changes the name displayed in the print statement header. By default literal
values have a blank header name and variables use their name as a header.
If the header must include spaces or lowercase characters then use SET
QUOTING RULES or SET DIALECT to enable delimited identifiers

EDIT USING edit-string
EDIT USING domain-name
Assigns an edit string for use when formatting the variable or literal value. If
a domain name is specified then the EDIT STRING from the domain is used.

This clause is only permitted for interactive SQL.

literal
Specifies the values you want displayed to the user during execution of the
command procedure. Enclose the character literals in single quotation marks.

variable
Prints the contents of the specified variable.

SQL Statements 8–103

PRINT Statement

Usage Notes

• Use a comma to separate two or more literals. A comma used as a
separator is not displayed to the user when the command procedure
executes.

• To display a comma as part of a literal, include the comma inside the single
quotation marks enclosing the literal.

• If you execute the PRINT statement within an SQL command procedure,
SQL prints the output to SYS$OUTPUT. Use the SET OUTPUT statement
to redirect the output to a file.

• If the variable was declared using a domain, then any EDIT STRING
defined for the domain will be used by the PRINT statement to format the
output.

Examples

Example 1: Displaying a literal from a command procedure

The following PRINT statement in a command procedure displays ’Creating
trigger definitions for the database’ during the execution of the command
procedure:

SQL> -- Trigger definition statements are next.
SQL> PRINT ’Creating trigger definitions for the database’;
SQL> CREATE TRIGGER EMPLOYEE_ID_CASCADE_DELETE

.

.

.

Example 2: Displaying a variable

The following PRINT statement displays the definition of a variable:

SQL> DECLARE :X CHAR(10);
SQL> BEGIN
cont> SET :X = ’Active’;
cont> END;
SQL> PRINT :X;
X
Active

8–104 SQL Statements

QUIT Statement

QUIT Statement

Stops an interactive SQL session, rolls back any changes you made, and
returns you to the DCL prompt.

Environment

You can issue the QUIT statement in interactive SQL only.

Format

QUIT

Usage Notes

Both the QUIT and EXIT statements end an interactive SQL session. The
QUIT statement automatically rolls back changes made during the session; the
EXIT statement, by default, commits changes made during the session. The
EXIT statement offers you a chance to roll back changes; QUIT does not offer a
chance to commit changes.

SQL Statements 8–105

RELEASE Statement

RELEASE Statement

Releases all resources used by a prepared dynamic SQL statement and
prevents the prepared statement from executing again.

The RELEASE statement is a dynamic SQL statement. Dynamic SQL lets
programs accept or generate SQL statements at run time, in contrast to
SQL statements that are part of the source code for precompiled programs or
SQL module language procedures. Unlike precompiled SQL or SQL module
language statements, such dynamically executed SQL statements are not
necessarily part of a program’s source code, but can be generated while the
program is running. Dynamic SQL is useful when you cannot predict the type
of SQL statement your program will need to process.

Environment

You can use the RELEASE statement:

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

Format

RELEASE <statement-name>
<statement-id-parameter>

Arguments

statement-name
statement-id-parameter
Specifies the name of a prepared statement or a statement name assigned in a
PREPARE statement.

A single set of dynamic SQL statements (PREPARE, DESCRIBE, EXECUTE,
dynamic DECLARE CURSOR) can handle any number of dynamically executed
statements.

You can supply either a parameter or a compile-time statement name to
identify the statement to be executed. Specifying a parameter lets SQL supply
identifiers to programs at run time. Use an integer parameter to contain
the statement identifier returned by SQL or a character string parameter
to contain the name of the statement that you pass to SQL. If you use
parameters, statements that refer to the prepared statement (DESCRIBE,

8–106 SQL Statements

RELEASE Statement

EXECUTE, DECLARE CURSOR) must also use those parameters instead of
the explicit statement name.

Usage Notes

• When you prepare an SQL statement for dynamic execution, you cannot
delete any schema definitions (such as constraints, indexes, or tables)
referred to directly or indirectly by the statement until you release the
statement.

The RELEASE statement gives you a way to explicitly release prepared
statements. SQL also implicitly releases dynamic SQL statements in the
following circumstances:

– After an EXECUTE IMMEDIATE statement

– When a PREPARE statement refers to an already-prepared statement
name

– After a DISCONNECT statement

You do not need to release statements for which the PREPARE statement
failed, to do so is a programming error.

• If you have a prepared statement that refers to a cursor that is destroyed
by a release of its own statement, executing the prepared statement
produces unpredictable results. For example:

DECLARE A CURSOR FOR A_STMT;
PREPARE A_STMT FROM ’SELECT * FROM T’;
PREPARE B_STMT FROM ’DELETE T WHERE CURRENT OF A’;

OPEN A;
FETCH A;
EXECUTE B_STMT;
CLOSE A;

RELEASE A_STMT;

EXECUTE B_STMT; <--- This produces unpredictable results.

SQL Statements 8–107

RELEASE Statement

Example

Example 1: Using the RELEASE statement

The following fragment from a COBOL program shows using a RELEASE
statement to release resources from a prepared SELECT statement:

.

.

.

FETCHES.
DISPLAY "Here’s the row we stored:"

EXEC SQL PREPARE STMT FROM
’SELECT * FROM EMPLOYEES WHERE EMPLOYEE_ID = "99999"’
END-EXEC
EXEC SQL DECLARE C CURSOR FOR STMT END-EXEC

EXEC SQL OPEN C END-EXEC
.
.
.

EXEC SQL FETCH C INTO
:EMP_ID:EMP_ID_IND,
:LNAME:LNAME_IND,
:FNAME:FNAME_IND,
:MID_INIT:MID_INIT_IND,
:ADDR_1:ADDR_1_IND,
:ADDR_2:ADDR_2_IND,
:CITY:CITY_IND,
:STATE:STATE_IND,
:P_CODE:P_CODE_IND,
:SEX:SEX_IND,
:BDATE:BDATE_IND,
:S_CODE:S_CODE_IND

END-EXEC

DISPLAY EMP_ID," ",
FNAME," ",
MID_INIT," ",
LNAME," ",
ADDR_1," ",
ADDR_2," ",
CITY," ",
STATE," ",
P_CODE," ",
SEX," ",
BDATE," ",
S_CODE.

8–108 SQL Statements

RELEASE Statement

PERFORM CHECK
EXEC SQL CLOSE C END-EXEC.
PERFORM CHECK.
EXEC SQL RELEASE STMT END-EXEC.
PERFORM CHECK.
.
.
.

SQL Statements 8–109

RENAME Statement

RENAME Statement

Allows the database administrator to change the name of a database object.
This new name is then available for reference in other data definition
statements, as well as from queries and routines.

Note

The RENAME statement may require that synonyms are enabled for
the database. Reference the SYNONYMS ARE ENABLED clause of the
ALTER, CREATE and IMPORT DATABASE statements.

Environment

You can use the RENAME statement:

• In interactive SQL

• Embedded in host language programs

• As part of a procedure in an SQL module or other compound statement

• In dynamic SQL as a statement to be dynamically executed

Format

RENAME oldname TO newname
CONSTRAINT
DOMAIN
FUNCTION
INDEX
MODULE
OUTLINE
PROCEDURE
PROFILE
ROLE
SEQUENCE
STORAGE MAP
TABLE
TRIGGER
USER
VIEW

8–110 SQL Statements

RENAME Statement

Arguments

newname
The new name for this object. This name must not already exist in the
database for this object type, nor be the name of a synonym. The one exception
is when the synonym references the oldname object. See the Usage Notes for
further discussion.

If this is a RENAME TABLE, RENAME VIEW or RENAME SEQUENCE then
the newname cannot be the name of an existing table, sequence or view.

oldname
The name of an existing object in the database. If the object type keyword
is specified then an object must exist of that type. The name may also be a
synonym for an object of the specified type.

Usage Notes

• You must have ALTER privilege on the database to rename a DOMAIN or
OUTLINE.

You must have ALTER privilege on the table, view, sequence, module,
function or procedure to alter its name. If the procedure or function is part
of a module then you will require only ALTER privilege on the containing
module.

You must have SECURITY privilege on the database to alter the name of a
USER, ROLE or PROFILE.

You must have ALTER privilege on the referencing table to rename a
CONSTRAINT, or TRIGGER.

• The names of the database objects are stored in the Rdb system tables
as both column values (for instance RDB$SEQUENCE_NAME) as well
as encoded in binary definitions (such as RDB$VIEW_RSE) and original
source (RDB$VIEW_SOURCE).

The RENAME clause will modify all column values to reference the new
name. However, the encoded values and original SQL source code are not
modified by this command.

To support these encoded definitions, as well as previously compiled
applications, the old names are used to create synonyms that reference the
new name of the object.

SQL Statements 8–111

RENAME Statement

The RENAME statement will create a synonym for the old names of
domains, functions, modules, procedures, sequences, tables and views.
These synonyms can be dropped if they are not used.

Note

It is not possible to create synonyms for OUTLINES, CONSTRAINTS,
OUTLINES, PROFILES, ROLES, TRIGGERS, or USERS. Therefore,
RENAME does not create synonyms for these objects. Care should be
taken if the old names appear in module definitions, or application
code.

• If a synonym already exists, and references the same object then it will be
removed as part of the RENAME statement. For example, if you rename a
table and wish to return to the previous oldname there will be an existing
synonym with this name. Rdb will implicitly remove this synonym during
the rename operation.

• The object type is optional. If no object type keyword is provided then Rdb
will search for a matching name in this order:

1. table or view

2. domain

3. function or procedure

4. module

5. sequence

6. trigger

7. constraint

8. outline

9. user

10. role

11. profile

12. index

13. storage map

8–112 SQL Statements

RENAME Statement

• When an IDENTITY column is created for a table, a sequence with the
same name as the table is implicitly created. You may not use RENAME
SEQUENCE on the identity sequence, use RENAME TABLE instead to
alter the name of the table and its identity sequence.

• You may not RENAME an Rdb system table, index, storage map, view or
sequence.

• RENAME INDEX changes the name of the index in all system tables.

A synonym is created using the old index name to reference the new
name of the index. This synonym will be used by any query outline that
previously referenced the index using the old name. Note that only a single
synonym name may exist. Therefore, if you have indices with the same
name as another object, then the RENAME INDEX command may fail if
creating the synonym detects a duplicate name,

The command ALTER INDEX ... RENAME TO ... is synonymous with the
RENAME INDEX command.

• RENAME STORAGE MAP changes the name of the storage map in all
system tables.

If the storage map has a companion function in the RDB$STORAGE_
MAPS system module, then that function will also be renamed. A synonym
is created using the old function name to reference the new name of the
function. This synonym will be used by any other routine, computed by
column, automatic column, and so on that referenced the old storage
mapping function.

The command ALTER STORAGE MAP ... RENAME TO ... is synonymous
with the RENAME STORAGE MAP command.

• CREATE SYNONYM ... FOR INDEX ... is now supported. Synonyms for
indices can be created, altered and dropped.

• CREATE SYNONYM ... FOR STORAGE MAP ... is now supported.
Synonyms for storage maps can be created, altered and dropped.

• The following table compares the RENAME statements with the equivalent
ALTER statements.

SQL Statements 8–113

RENAME Statement

Table 8–2 Comparison between RENAME and ALTER Statements

RENAME statement Equivalent ALTER statement
Is a synonym
created?

RENAME CONSTRAINT ALTER CONSTRAINT ...
RENAME TO

No

RENAME DOMAIN ALTER DOMAIN ...
RENAME TO

Yes

RENAME FUNCTION ALTER FUNCTION ...
RENAME TO

Yes

RENAME INDEX ALTER INDEX ... RENAME
AS

Yes

RENAME MODULE ALTER MODULE ...
RENAME TO

Yes

RENAME OUTLINE ALTER OUTLINE ...
RENAME TO

No

RENAME PROCEDURE ALTER PROCEDURE ...
RENAME TO

Yes

RENAME PROFILE ALTER PROFILE ...
RENAME TO

No

RENAME ROLE ALTER ROLE ... RENAME
TO

No

RENAME SEQUENCE ALTER SEQUENCE ...
RENAME TO

Yes

RENAME STORAGE MAP ALTER STORAGE MAP ...
RENAME AS

Yes

RENAME TABLE ALTER TABLE ... RENAME
TO

Yes

RENAME TRIGGER ALTER TRIGGER ...
RENAME TO

No

RENAME USER ALTER USER ... RENAME
TO

No

RENAME VIEW ALTER VIEW ... RENAME
AS

Yes

8–114 SQL Statements

RENAME Statement

Examples

Example 1: Preparing a database for RENAME statement

The RENAME statement for most objects requires that synonyms be enabled.
This example shows the reported error if a RENAME is attempted for an object
that requires synonyms.

SQL> attach ’filename personnel_sql’;
SQL> show table
User tables in database with filename personnel_sql

CANDIDATES
COLLEGES
CURRENT_INFO A view.
CURRENT_JOB A view.
CURRENT_SALARY A view.
DEGREES
DEPARTMENTS
EMPLOYEES
JOBS
JOB_HISTORY
RESUMES
SALARY_HISTORY
WORK_STATUS

SQL> rename table EMPLOYEES to COMPANY_STAFF;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-E-UNSSYNONYM, this database does not have synonyms enabled
SQL> disconnect all;
SQL> alter database filename personnel_sql synonyms are enabled;

Example 2: Renaming a table in the PERSONNEL database

This example renames the EMPLOYEES table. The SHOW TABLE statement
lists the new name as well as synonym with the old name of the table.

SQL Statements 8–115

RENAME Statement

SQL> attach ’filename personnel_sql’;
SQL> rename table EMPLOYEES to COMPANY_STAFF;
SQL> show table
User tables in database with filename personnel_sql

CANDIDATES
COLLEGES
COMPANY_STAFF
CURRENT_INFO A view.
CURRENT_JOB A view.
CURRENT_SALARY A view.
DEGREES
DEPARTMENTS
JOBS
JOB_HISTORY
RESUMES
SALARY_HISTORY
WORK_STATUS
EMPLOYEES A synonym for table COMPANY_STAFF

SQL> select last_name from COMPANY_STAFF where employee_id = ’00164’;
LAST_NAME
Toliver
1 row selected
SQL>

Example 3: Renaming back to the original name

This example shows that the rename back to the original name will create a
new synonym and remove the old synonym which had the same name as the
tables new name.

SQL> rename table COMPANY_STAFF to EMPLOYEES;
SQL> show table
User tables in database with filename personnel_sql

CANDIDATES
COLLEGES
CURRENT_INFO A view.
CURRENT_JOB A view.
CURRENT_SALARY A view.
DEGREES
DEPARTMENTS
EMPLOYEES
JOBS
JOB_HISTORY
RESUMES
SALARY_HISTORY
WORK_STATUS
COMPANY_STAFF A synonym for table EMPLOYEES

SQL>

8–116 SQL Statements

RENAME Statement

Example 4: Can not rename to a name used by the same object class or a
synonym

The RENAME command does not allow the new name to be in use by the same
class of objects, or by a synonym. In particular tables, views and sequences
share the same name space.

SQL> rename view CURRENT_INFO to CURRENT_SALARY;
%SQL-F-REL_EXISTS, Table CURRENT_SALARY already exists in this database or
schema
SQL> create sequence CURRENT_INFORMATION;
SQL> rename view CURRENT_INFO to CURRENT_INFORMATION;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-E-SEQEXTS, there is another sequence named "CURRENT_INFORMATION" in
this database
-RDMS-F-RELNOTCHG, relation CURRENT_INFO has not been changed

Example 5: Using the RENAME INDEX and RENAME STORAGE MAP
commands

SQL> show table (storage maps,index) employees
Information for table EMPLOYEES

Indexes on table EMPLOYEES:
EMPLOYEES_HASH with column EMPLOYEE_ID
No Duplicates allowed
Type is Hashed Scattered
Key suffix compression is DISABLED

EMP_EMPLOYEE_ID with column EMPLOYEE_ID
No Duplicates allowed
Type is Sorted
Key suffix compression is DISABLED
Node size 430

EMP_LAST_NAME with column LAST_NAME
Duplicates are allowed
Type is Sorted
Key suffix compression is DISABLED

Storage Map for table EMPLOYEES:
EMPLOYEES_MAP

SQL> rename storage map EMPLOYEES_MAP to EMP_STORAGE_MAP;
SQL> rename index EMPLOYEES_HASH to EMP_ID_HASH;
SQL> show table (storage maps,index) employees
Information for table EMPLOYEES

Indexes on table EMPLOYEES:
EMP_EMPLOYEE_ID with column EMPLOYEE_ID
No Duplicates allowed
Type is Sorted
Key suffix compression is DISABLED
Node size 430

SQL Statements 8–117

RENAME Statement

EMP_ID_HASH with column EMPLOYEE_ID
No Duplicates allowed
Type is Hashed Scattered
Key suffix compression is DISABLED

EMP_LAST_NAME with column LAST_NAME
Duplicates are allowed
Type is Sorted
Key suffix compression is DISABLED

Storage Map for table EMPLOYEES:
EMP_STORAGE_MAP

SQL> show storage map
User Storage Maps in database with filename mf_personnel_sql

CANDIDATES_MAP
COLLEGES_MAP
DEGREES_MAP
DEPARTMENTS_MAP
EMP_STORAGE_MAP
JOBS_MAP
JOB_HISTORY_MAP
SALARY_HISTORY_MAP
WORK_STATUS_MAP

SQL> show index
User indexes in database with filename mf_personnel_sql

COLL_COLLEGE_CODE
DEG_COLLEGE_CODE
DEG_EMP_ID
DEPARTMENTS_INDEX
EMP_EMPLOYEE_ID
EMP_ID_HASH
EMP_LAST_NAME
JH_EMPLOYEE_ID
JOB_HISTORY_HASH
SH_EMPLOYEE_ID
EMPLOYEES_HASH A synonym for index EMP_ID_HASH

SQL> show system function
Functions in database with filename mf_personnel_sql

CANDIDATES_MAP
COLLEGES_MAP
DEGREES_MAP
DEPARTMENTS_MAP
EMP_STORAGE_MAP
JOBS_MAP
JOB_HISTORY_MAP
SALARY_HISTORY_MAP
WORK_STATUS_MAP
EMPLOYEES_MAP A synonym for function EMP_STORAGE_MAP

SQL>

8–118 SQL Statements

REPEAT Control Statement

REPEAT Control Statement

Repetitively executes one or more SQL statements in a compound loop until an
end condition is met.

Environment

You can use the REPEAT control statement in a compound statement of a
multistatement procedure:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

repeat-statement=

REPEAT
<beginning-label>:

compound-use-statement UNTIL predicate

END REPEAT
<ending-label>

Arguments

beginning-label:
Assigns a name to the REPEAT statement. A beginning label used with the
LEAVE statement lets you perform a controlled exit from a repeat loop. A
named repeat loop is called a labeled repeat loop statement. A beginning
label must be unique within the procedure in which the label is contained.

END REPEAT ending-label
Marks the end of a control loop. If you choose to include the optional ending
label, it must match exactly its corresponding beginning label. An ending label
must be unique within the procedure in which the label is contained.

SQL Statements 8–119

REPEAT Control Statement

The optional ending-label argument makes multistatement procedures easier
to read, especially in complex multistatement procedure blocks.

REPEAT compound-use-statement
Repeatedly executes a block of SQL statements until an end condition is met,
as specified by the UNTIL predicate clause.

UNTIL predicate
Specifies a condition that controls how many times SQL can execute the
statements embedded within its REPEAT . . . UNTIL block (collectively
referred to as its compound statement). SQL executes the compound statement
once and then evaluates the UNTIL condition. If it evaluates to false or
NULL (unknown) and does not encounter an error exception, SQL executes the
compound statement again. Each time the search condition evaluates to false
or NULL, the REPEAT statement executes the compound statement. If the
UNTIL condition evaluates to true, SQL bypasses the compound statement and
passes control to the statement after the END REPEAT statement.

Usage Notes

The loop body is executed at least once for a REPEAT statement.

Example

Example 1: Using a REPEAT Statement to List Files in the Current Directory

SQL> SET VERIFY;
SQL> ATTACH ’FILE SCRATCH’;
SQL> CREATE DOMAIN file_name VARCHAR(255);
SQL> CREATE PROCEDURE find_file
cont> (IN :FILESPEC file_name BY DESCRIPTOR,
cont> INOUT :RESULTANT_FILESPEC file_name BY DESCRIPTOR,
cont> INOUT :CONTEXT INTEGER BY REFERENCE);
cont> EXTERNAL NAME LIB$FIND_FILE
cont> LOCATION ’SYS$LIBRARY:LIBRTL.EXE’
cont> LANGUAGE GENERAL
cont> PARAMETER STYLE GENERAL
cont> COMMENT IS

8–120 SQL Statements

REPEAT Control Statement

cont> ’DCL HELP: LIB$FIND_FILE ’
cont> / ’The Find File routine is called with a wildcard file’
cont> / ’specification for which it searches. LIB$FIND_FILE ’
SQL> CREATE PROCEDURE Find_file_end
cont> (IN :CONTEXT INTEGER BY REFERENCE);
cont> EXTERNAL
cont> NAME LIB$FIND_FILE_END
cont> LOCATION ’SYS$LIBRARY:LIBRTL.EXE’
cont> LANGUAGE GENERAL
cont> PARAMETER STYLE GENERAL
cont> COMMENT IS
cont> ’DCL HELP: LIB$FIND_FILE_END ’
cont> / ’The End of Find File routine is called once’
cont> / ’after each sequence of ’
cont> / ’calls to LIB$FIND_FILE. LIB$FIND_FILE_END deallocates’
cont> / ’any saved Record Management Service (RMS) context and’
cont> / ’deallocates the virtual memory used to hold the’
cont> / ’allocated context block.’;
SQL> SET FLAGS ’TRACE’;
SQL> BEGIN
cont> -- This procedure performs a call to an external
cont> -- routine to list files located in the current
cont> -- default directory
cont> DECLARE :done, :context integer = 0;
cont> DECLARE :search_string FILE_NAME = ’*.SQL’;
cont> DECLARE :file_spec FILE_NAME;
cont> REPEAT
cont> -- Ask the OpenVMS routine for the next name
cont> CALL find_file (:search_string, :file_spec, :context);
cont> IF POSITION (’*’ in :file_spec) = 0
cont> AND POSITION (’%’ in :file_spec) = 0
cont> AND POSITION (’...’ in :file_spec) = 0
cont> THEN
cont> -- Display the name (there are no wildcards)
cont> TRACE :file_spec;
cont> ELSE
cont> SET :done = 1;
cont> END IF;
cont> -- Exit when we have no more file names
cont> UNTIL :done = 1
cont> END REPEAT;
cont> -- Clean up search context
cont> CALL find_file_end (:context);
cont> END;
~Xt: RDBVMS:[USER.V71]CREATE_ROLES.SQL;1
~Xt: RDBVMS:[USER.V71]TEST.SQL;1
SQL>

SQL Statements 8–121

RETURN Control Statement

RETURN Control Statement

Returns the value of the stored function.

Environment

You can use the RETURN statement in a compound statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

RETURN value-expr

Arguments

value-expr
The value expression to be returned as the result of this function call. The
value-expr must be assignment-compatible with the data type defined by the
stored function RETURNS clause.

See Section 2.6 for more information on value expressions.

Usage Notes

• The RETURN statement is required syntax when defining a stored
function.

• If the RETURN statement is never executed, because of a conditional
expression, then an exception is raised at run time.

• The RETURN statement is permitted only within stored functions.

• The RETURN statement should not be confused with the RETURNS clause
of the stored function definition. The RETURNS clause defines the data
type of the function, and the RETURN clause is executed to result the
result.

8–122 SQL Statements

RETURN Control Statement

Examples

Example 1: Specifying the RETURN statement in a stored function

SQL> CREATE MODULE utility_functions
cont> LANGUAGE SQL
cont> FUNCTION abs (IN :arg INTEGER) RETURNS INTEGER
cont> COMMENT ’Returns the absolute value of an integer’;
cont> BEGIN
cont> RETURN CASE
cont> WHEN :arg < 0 THEN - :arg
cont> ELSE :arg
cont> END;
cont> END;

.

.

.
cont> END MODULE;

SQL Statements 8–123

REVOKE Statements

REVOKE Statements

Deletes privileges or roles from object access control.

Usage Notes

The following notes apply to all REVOKE statements.

• For the SELECT, INSERT, UPDATE and DELETE data manipulation
privileges, SQL checks the access privilege set for the database and for the
individual table before allowing access to a specific table. For example,
if your SELECT privilege for a database that contains the EMPLOYEES
table is revoked, you will not be able to read rows from the table even
though you may have SELECT privilege to the EMPLOYEES table itself.

• You cannot execute the REVOKE statement when any of the LIST,
DEFAULT or RDB$SYSTEM storage areas are set to read-only. You must
first set these storage areas to read/write. Note that in some databases
RDB$SYSTEM will also be the default and list storage area.

• Deletions and changes to ACLs do not take effect until you attach to the
database again, even though those changes are displayed by the SHOW
PROTECTION and SHOW PRIVILEGES statements.

• You must attach to all databases to which you refer in a REVOKE
statement. If you use the default database attach, you must use the
default alias (RDB$DBHANDLE in interactive and precompiled SQL; in
SQL module language files, the identifier specified in the ALIAS clause) to
work with database ACLs.

• You must execute the REVOKE statement in a read/write transaction. If
you issue this statement when there is no active transaction, SQL starts
a transaction with characteristics specified in the most recent DECLARE
TRANSACTION statement.

8–124 SQL Statements

REVOKE Statement

REVOKE Statement

Removes privileges from or entirely deletes an entry in the Oracle Rdb access
control list (ACL) for a database object. Each entry in an access control
list consists of an identifier (or role) and a list of privileges assigned to the
identifier.

• Each identifier specifies a user or a set of users.

• The list of privileges specifies which operations that user or user group
can perform on the database, table, column, module, procedure, function or
sequence.

When a user tries to perform an operation on a database, SQL reads the
associated ACL from top to bottom, comparing the identifier of the user with
each entry. As soon as SQL finds the first match, it grants the rights listed in
that entry and stops the search. All identifiers that do not match a previous
entry are compared with the subsequent entry, and if no match occurs, they
receive the rights of (‘‘fall through’’ to) the entry [*,*], if it exists. If no entry
has the user identifier [*,*], then unmatched user identifiers are denied all
access to the database, table, or column. For this reason, both the entries and
their order in the list are important.

To create an entry or add privileges to an entry in the Oracle Rdb access
control list for a database object, see the GRANT Statement.

Environment

You can use the REVOKE statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a nonstored procedure in a nonstored SQL module

• In dynamic SQL as a statement to be dynamically executed

SQL Statements 8–125

REVOKE Statement

Format

REVOKE

db-privs ON DATABASE ALIAS <alias>
,
*

table-privs ON <table-name>
TABLE <view-name>

,
*

column-privs ON COLUMN <column-name>
,

module-privs ON MODULE <module-name>
,
*

ext-routine-privs ON FUNCTION <ext-rout-name>
ON PROCEDURE ,

*
sequence-privs ON SEQUENCE <sequence-name>

,
*

revoke-from

db-privs=

SELECT
INSERT
OPERATOR
DELETE
CREATE
ALTER
DROP
DBCTRL
DBADM
SHOW
REFERENCES
UPDATE
SECURITY
DISTRIBTRAN

,
ALL PRIVILEGES
ENTRY

8–126 SQL Statements

REVOKE Statement

table-privs=

SELECT
INSERT
DELETE
CREATE
ALTER
DROP
DBCTRL
SHOW
REFERENCES

(<column-name>)
,

UPDATE
(<column-name>)

,
,

ALL PRIVILEGES
ENTRY

column-privs =

UPDATE
REFERENCES

,
ALL PRIVILEGES
ENTRY

module-privs =

ALTER
DBCTRL
DROP
EXECUTE
REFERENCES
SHOW

,
ALL PRIVILEGES
ENTRY

SQL Statements 8–127

REVOKE Statement

ext-routine-privs =

ALTER
DBCTRL
DROP
EXECUTE
REFERENCES
SHOW

,
ALL PRIVILEGES
ENTRY

sequence-privs =

ALTER
DBCTRL
DROP
REFERENCES
SELECT
SHOW

,
ALL PRIVILEGES

revoke-from =

FROM identifier
PUBLIC AFTER identifier

PUBLIC
POSITION <n>

,

identifier =

user-identifier
general-identifier
system-identifier
role-name

+

Arguments

AFTER identifier
AFTER PUBLIC
POSITION n
Specifies the position of the entry within the ACL. If you omit the AFTER or
POSITION argument, SQL searches the entire ACL for an identifier list that

8–128 SQL Statements

REVOKE Statement

matches the one specified in the FROM clause of the REVOKE statement. If
it finds a match, it modifies the ACL entry by deleting the privileges specified
in the privilege list. If there is no match, SQL generates an error and the
REVOKE statement has no effect on the ACL.

With the AFTER or POSITION argument, you can specify the position in the
list from which SQL searches for an ACL entry with an identifier that matches
the one specified in the FROM clause of the REVOKE statement.

• In the AFTER argument, the identifier specifies the entry in the ACL
after which SQL begins its search for the entry to be modified or deleted.
If none of the entries in the ACL has an identifier that matches the
identifier specified in the AFTER argument, SQL generates an error and
the statement fails.

Starting after the entry specified by the identifier in the AFTER argument,
SQL searches entries in the ACL. If an entry has an identifier that matches
the identifier specified by the FROM clause of the REVOKE statement,
SQL modifies or deletes that ACL entry.

If none of the entries has an identifier that matches the identifier specified
by the FROM clause of the REVOKE statement, SQL generates an error
and the statement fails (even if an entry before the position at which SQL
began its search had an identifier that matched).

Specifying PUBLIC is equivalent to a wildcard specification of all user
identifiers.

• In the POSITION argument, the integer specifies the earliest relative
position in the ACL of the entry to be modified or deleted. If the integer is
larger than the number of entries in the ACL, SQL generates an error and
the statement fails.

Starting with the position specified by the POSITION argument, SQL
searches entries in the ACL. If an entry has an identifier that matches the
identifier specified by the FROM clause of the REVOKE statement, SQL
modifies or deletes that ACL entry.

If none of the entries has an identifier that matches the identifier specified
by the FROM clause of the REVOKE statement, SQL generates an error
and the statement fails (even if an entry before the position at which SQL
began its search had an identifier that matched).

ALL PRIVILEGES
Specifies that SQL should revoke all privileges in the ACL entry. The REVOKE
ALL PRIVILEGES statement differs from the REVOKE ENTRY statement in
that it does not delete the entire entry from the ACL. The identifier remains,
but without any privileges. An empty ACL entry denies all access to users

SQL Statements 8–129

REVOKE Statement

matching the identifier, even if an entry later in the ACL grants PUBLIC
access.

ENTRY
Deletes the entire entry in the ACL, including the identifier.

FROM identifier
FROM PUBLIC
Specifies the identifiers for the ACL entry to be modified or deleted. Specifying
PUBLIC is equivalent to a wildcard specification of all user identifiers.

You can specify foyr types of identifiers:

• User identifiers

• General identifiers

• System-defined identifiers

• Role names

You can specify more than one identifier by combining them with plus
signs (+). Such identifiers are called multiple identifiers. They identify
only those users who are common to all the groups defined by the individual
identifiers. Users who do not match all the identifiers are not controlled by
that entry.

For instance, the multiple identifier SECRETARIES + INTERACTIVE
specifies only members of the group defined by the general identifier
SECRETARIES that are interactive processes. It does not identify members of
the SECRETARIES group that are not interactive processes.

For more information about identifiers, see your operating system
documentation.

general-identifier
Identifies groups of users on the system and are defined by the OpenVMS
system manager in the system privileges database. The following are possible
general identifiers:

• DATAENTRY

• SECRETARIES

• MANAGERS

8–130 SQL Statements

REVOKE Statement

ON DATABASE ALIAS alias
ON TABLE table-name
ON COLUMN column-name
ON MODULE module-name
ON FUNCTION ext-routine-name
ON PROCEDURE ext-routine-name
ON SEQUENCE sequence-name
Specifies whether the REVOKE statement applies to ACLs for database objects.
You can specify a list of names for any form of the ON clause. You must qualify
a column name with at least the associated table name.

ON DATABASE ALIAS *
ON TABLE *
ON MODULE *
ON FUNCTION *
ON PROCEDURE *
ON SEQUENCE *
Specifies whether the REVOKE statement applies to ACLs for all objects of the
specified types.

db-privs
table-privs
column-privs
module-privs
ext-routine-privs
sequence-privs
Specifies the list of privileges you want to remove from an existing ACL entry.
The operations permitted by a given privilege keyword differ, depending on
whether it was granted for a database, table, column, module, external routine,
or sequence. Table 7-5 in the GRANT Statement lists the privilege keywords
and their meanings for databases, tables, modules, columns, external routines,
and sequences.

role-name
The name of a role, such as one created with the CREATE ROLE statement.
If the role name exists as an operating system group or rights identifier, then
Oracle Rdb will create the role automatically when you issue the GRANT
statement. A role that is created automatically always has the attribute of
IDENTIFIED EXTERNALLY.

SQL Statements 8–131

REVOKE Statement

system-identifier
Automatically defined by the OpenVMS system when the rights database is
created at system installation time. System-defined identifiers are assigned
depending on the type of login you execute. The following are all valid
system-defined identifiers:

• BATCH

• NETWORK

• INTERACTIVE

• LOCAL

• DIALUP

• REMOTE

user-identifier
Uniquely identifies each user on the system.

The user identifier consists of the standard OpenVMS user identification code
(UIC), a group name, and a member name (user name). The group name is
optional. The user identifier can be in either numeric or alphanumeric format.
The following are all valid user identifiers that could identify the same user:

K_JONES
[SYSTEM3, K_JONES]
[341,311]

You can use the asterisk (*) wildcard character as part of a user identifier. For
example, if you want to specify all users in a group on an OpenVMS system,
you can enter [341,*] as the identifier.

When Oracle Rdb creates a database, it automatically creates an ACL entry
with the identifier [*,*], which grants all privileges except DBCTRL to any
user.

You cannot use more than one user identifier in a multiple identifier.

Usage Notes

• You cannot REVOKE privileges on routines in a stored module; use
REVOKE on the module instead.

• You can only revoke column-level privileges that have been specifically
granted at the column level.

8–132 SQL Statements

REVOKE Statement

• For the SELECT, INSERT, and DELETE data manipulation privileges,
SQL checks the ACL for the database and for the individual table before
allowing access to a specific table. For example, if your SELECT privilege
for a database that contains the EMPLOYEES table is revoked, you will
not be able to read rows from the table even though you may have SELECT
privilege to the EMPLOYEES table itself.

• To revoke the data manipulation privileges UPDATE and REFERENCES,
you must have at least read access to the database and the appropriate
column privilege.

• You cannot deny yourself the DBCTRL privilege for a database, table,
module, external routine, or sequence that you create.

• The SELECT privilege is a prerequisite for all other privileges. If you
revoke the SELECT privilege, you effectively deny all privileges, even if
they are specified in the privilege list. This restriction may cause REVOKE
statements to fail when you might expect them to work. For instance, the
following REVOKE statement fails because it tries to revoke the SELECT
privilege from the ACL entry for the owner. Because that implicitly denies
DBCTRL on the table to the owner, the statement fails.

SQL> REVOKE SELECT ON EMPLOYEES FROM serle;
%RDB-E-NO_PRIV, privilege denied by database facility

For more information on protection for an Oracle Rdb database, see the chapter
on defining database privileges in the Oracle Rdb Guide to Database Design
and Definition.

Example

Example 1: Using REVOKE to manage user access to the database and tables

SQL> attach ’filename DB$:MF_PERSONNEL’;
SQL>
SQL> -- examine current privileges
SQL> show protection on database RDB$DBHANDLE;

SQL Statements 8–133

REVOKE Statement

Protection on Alias RDB$DBHANDLE
(IDENTIFIER=SQLNET4RDB,ACCESS=SELECT+INSERT+UPDATE+DELETE+SHOW+CREATE+ALTER+
DROP+DBCTRL+OPERATOR+DBADM+SECURITY+DISTRIBTRAN)

(IDENTIFIER=[DOC,DOC_READER],ACCESS=SELECT+CREATE)
(IDENTIFIER=[DOC,DOC_WRITER],ACCESS=SELECT+INSERT+UPDATE+DELETE+SHOW+CREATE+
ALTER+DROP+DBCTRL+OPERATOR+DBADM+REFERENCES)

(IDENTIFIER=[*,*],ACCESS=SELECT+INSERT+UPDATE+DELETE+SHOW+CREATE+ALTER+DROP+
OPERATOR+DBADM+REFERENCES)

SQL>
SQL> -- revoke selected privileges
SQL> revoke CREATE on database alias RDB$DBHANDLE from DOC_WRITER;
SQL> revoke DISTRIBTRAN on database alias RDB$DBHANDLE from DOC_REVIEWER;
SQL> show protection on database RDB$DBHANDLE;
Protection on Alias RDB$DBHANDLE

(IDENTIFIER=SQLNET4RDB,ACCESS=SELECT+INSERT+UPDATE+DELETE+SHOW+CREATE+ALTER+
DROP+DBCTRL+OPERATOR+DBADM+SECURITY+DISTRIBTRAN)

(IDENTIFIER=[DOC,DOC_READER],ACCESS=SELECT)
(IDENTIFIER=[DOC,DOC_WRITER],ACCESS=SELECT+INSERT+UPDATE+DELETE+SHOW+ALTER+
DROP+DBCTRL+OPERATOR+DBADM+REFERENCES)

(IDENTIFIER=[*,*],ACCESS=SELECT+INSERT+UPDATE+DELETE+SHOW+CREATE+ALTER+DROP+
OPERATOR+DBADM+REFERENCES)

SQL>
SQL> -- No longer all access to DOC_REVIEWER, use wildcard for all tables
SQL> revoke ALL PRIVILEGES on table * from DOC_REVIEWER;
SQL> commit;

Example 2: Revoking DROP Sequence Privileges from a User

SQL> CREATE SEQUENCE EMPID;
SQL> SHOW PROTECTION ON SEQUENCE EMPID
Protection on Sequence EMPID

(IDENTIFIER=[RDB,STUART],ACCESS=SELECT+SHOW+ALTER+DROP+DBCTRL)
(IDENTIFIER=[*,*],ACCESS=NONE)

SQL> GRANT SELECT ON SEQUENCE EMPID TO PUBLIC;
SQL> SHOW PROTECTION ON SEQUENCE EMPID;
Protection on Sequence EMPID

(IDENTIFIER=[RDB,STUART],ACCESS=SELECT+SHOW+ALTER+DROP+DBCTRL)
(IDENTIFIER=[*,*],ACCESS=SELECT)

SQL> REVOKE DROP ON SEQUENCE EMPID FROM STUART;
SQL> SHOW PROTECTION ON SEQUENCE EMPID;
Protection on Sequence EMPID

(IDENTIFIER=[RDB,STUART],ACCESS=SELECT+SHOW+ALTER+DBCTRL)
(IDENTIFIER=[*,*],ACCESS=SELECT)

8–134 SQL Statements

REVOKE Statement: ANSI/ISO-Style

REVOKE Statement: ANSI/ISO-Style

Removes privileges from the Oracle Rdb access control list granted by a specific
user for a database object. Each entry in an ANSI/ISO-style access privilege
set consists of an identifier and a list of privileges assigned to the identifier.

• Each identifier specifies a user or the PUBLIC keyword.

• The set of privileges specifies what operations that user or user group can
perform on the database, table, column, module, procedure, function or
sequence.

For ANSI/ISO-style databases, the access privilege set is not order-dependent.
The user matches the entry in the access privilege set, receives whatever
privileges have been granted on the database object and receives the privileges
defined for PUBLIC. A user without an entry in the access privilege set
receives only the privileges defined for PUBLIC. The PUBLIC identifier always
has an entry in the access control list, even if PUBLIC has no access to the
database object.

To create an entry or add privileges to an entry in the Oracle Rdb access control
list for a a database object, see the GRANT Statement: ANSI/ISO-Style.

Environment

You can use the REVOKE statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a nonstored procedure in a nonstored SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

SQL Statements 8–135

REVOKE Statement: ANSI/ISO-Style

REVOKE

db-privs-ansi ON DATABASE ALIAS <alias>
,
*

table-privs-ansi ON <table-name>
TABLE <view-name>

,
*

column-privs-ansi ON COLUMN <column-name>
,

module-privs-ansi ON MODULE <module-name>
,
*

ext-routine-privs-ansi ON FUNCTION <ext-routine-name>
ON PROCEDURE ,

*
sequence-privs-ansi ON SEQUENCE > <sequence-name>

,
*

revoke-ansi-from

db-privs-ansi =

SELECT
INSERT
OPERATOR
DELETE
CREATE
ALTER
DROP
DBCTRL
DBADM
SHOW
REFERENCES
UPDATE
SECURITY
DISTRIBTRAN

,
ALL PRIVILEGES

8–136 SQL Statements

REVOKE Statement: ANSI/ISO-Style

table-privs-ansi =

SELECT
INSERT
DELETE
CREATE
ALTER
DROP
DBCTRL
SHOW
REFERENCES

(<column-name>)
,

UPDATE
(<column-name>)

,
,

ALL PRIVILEGES

column-privs-ansi =

UPDATE
REFERENCES

,
ALL PRIVILEGES

module-privs-ansi =

ALTER
DBCTRL
DROP
EXECUTE
REFERENCES
SHOW

,
ALL PRIVILEGES

ext-routine-privs-ansi =

ALTER
DBCTRL
DROP
EXECUTE
REFERENCES
SHOW

,
ALL PRIVILEGES

SQL Statements 8–137

REVOKE Statement: ANSI/ISO-Style

sequence-privs-ansi =

ALTER
DBCTRL
DROP
REFERENCES
SELECT
SHOW

,
ALL PRIVILEGES

revoke-ansi-from =

FROM identifier-ansi-style
PUBLIC

,

identifier-ansi-style =

user-identifier

Arguments

ALL PRIVILEGES
Specifies that SQL should revoke all privileges in the access privilege set entry.

FROM identifier-ansi-style
FROM PUBLIC
Specifies the identifiers for the access privilege set entry to be modified or
deleted. Specifying PUBLIC is equivalent to a wildcard specification of all user
identifiers.

The only identifiers are ones that translate to an OpenVMS user identification
code (UIC).

For more information about user identifiers, see the operating system
documentation.

ON DATABASE ALIAS alias
ON TABLE table-name
ON COLUMN column-name
ON MODULE module-name
ON FUNCTION ext-routine-name

8–138 SQL Statements

REVOKE Statement: ANSI/ISO-Style

ON PROCEDURE ext-routine-name
ON SEQUENCE sequence-name
Specifies whether the REVOKE statement applies to ACLs for database objects.
You can specify a list of names for any form of the ON clause. You must qualify
a column name with at least the associated table name.

ON DATABASE ALIAS *
ON TABLE *
ON MODULE *
ON FUNCTION *
ON PROCEDURE *
ON SEQUENCE *
Specifies whether the REVOKE statement applies to ACLs for all objects of the
specified types. If privileges are denied for the operation on some objects, then
the REVOKE is aborted.

db-privs-ansi
table-privs-ansi
column-privs-ansi
module-privs-ansi
ext-routine-privs-ansi
sequence-privs-ansi
Specifies the list of privileges you want to remove from an existing access
privilege set entry. The operations permitted by a given privilege keyword
differ, depending on whether it was granted for a database, table, column,
module, routine, or sequence. Table 7-5 in the GRANT Statement lists the
privilege keywords and their meanings for databases, tables, modules, external
routines and sequences.

user-identifier
Uniquely identifies each user on the system.

The user identifier consists of the standard OpenVMS user identification code
(UIC), a group name, and a member name (user name). The group name is
optional. The user identifier can be in either numeric or alphanumeric format.
The following are all valid user identifiers that could identify the same user:

K_JONES
[SYSTEM3, K_JONES]
[341,311]

When Oracle Rdb creates a database, it automatically creates an access
privilege set entry with the PUBLIC identifier, which grants all privileges
except DBCTRL to any user. In access privilege set databases, the only
wildcard allowed is the PUBLIC identifier.

SQL Statements 8–139

REVOKE Statement: ANSI/ISO-Style

You cannot use more than one user identifier in a multiple identifier.

Usage Notes

• You can revoke only column-level privileges that have been specifically
granted at the column level.

• To revoke the data manipulation privileges UPDATE and REFERENCES,
you need to have been granted at least select access to the database and
the appropriate column privilege.

• When a privilege is revoked from the grantee who received the privilege
with the WITH GRANT OPTION clause, the privilege is also revoked
from all users who received the privilege from that grantee (unless these
users have received the privilege from yet another user who still has the
privilege).

• You cannot REVOKE privileges on routines in a stored module; use
REVOKE on the module instead.

For more information on protection for an Oracle Rdb database, see the chapter
on defining database privileges in the Oracle Rdb Guide to Database Design
and Definition.

Examples

Example 1: Managing User Access with the REVOKE statement

SQL> attach ’filename DB$:ANSI_PERSONNEL’;
SQL>
SQL> -- examine current privileges
SQL> show protection on database RDB$DBHANDLE;

8–140 SQL Statements

REVOKE Statement: ANSI/ISO-Style

Protection on Alias RDB$DBHANDLE
[DOC,DOC_WRITER]:
With Grant Option: SELECT,INSERT,UPDATE,DELETE,SHOW,CREATE,ALTER,DROP,

DBCTRL,OPERATOR,DBADM,SECURITY,DISTRIBTRAN
Without Grant Option: SELECT,INSERT,UPDATE,DELETE,SHOW,CREATE,ALTER,DROP,

DBCTRL,OPERATOR,DBADM,SECURITY,DISTRIBTRAN
[DOC,DOC_READER]:
With Grant Option: NONE
Without Grant Option: SELECT,CREATE

[*,*]:
With Grant Option: NONE
Without Grant Option: NONE

SQL>
SQL> -- revoke selected privileges
SQL> revoke CREATE on database alias RDB$DBHANDLE from DOC_READER;
SQL> revoke DISTRIBTRAN on database alias RDB$DBHANDLE from DOC_WRITER;
SQL> show protection on database RDB$DBHANDLE;
Protection on Alias RDB$DBHANDLE
[DOC,DOC_WRITER]:
With Grant Option: SELECT,INSERT,UPDATE,DELETE,SHOW,CREATE,ALTER,DROP,

DBCTRL,OPERATOR,DBADM,SECURITY
Without Grant Option: SELECT,INSERT,UPDATE,DELETE,SHOW,CREATE,ALTER,DROP,

DBCTRL,OPERATOR,DBADM,SECURITY
[DOC,DOC_READER]:
With Grant Option: NONE
Without Grant Option: SELECT

[*,*]:
With Grant Option: NONE
Without Grant Option: NONE

SQL>
SQL> -- prevent drop by revoking the privilege
SQL> revoke DROP on table * from DOC_READER;
SQL> commit;

Example 2: Revoking a privilege granted with the WITH GRANT OPTION
clause

When the privilege is revoked from the grantee, rdb_doc, who received the
privilege with the WITH GRANT OPTION clause, the privilege is also revoked
from all users who received the privilege from that grantee.

SQL Statements 8–141

REVOKE Statement: ANSI/ISO-Style

SQL> SHOW PROTECTION ON TABLE EMPLOYEES;
[*,*]:
With Grant Option: NONE
Without Grant Option: SELECT

[SQL,WARRING]:
With Grant Option: SELECT,INSERT,UPDATE,DELETE,SHOW,CREATE,ALTER,

DROP,DBCTRL,OPERATOR,DBADM,REFERENCES
Without Grant Option: SELECT,INSERT,UPDATE,DELETE,SHOW,CREATE,ALTER,

DROP,DBCTRL,DBADM,REFERENCES
[RDB,RDB_DOC]:
With Grant Option: SHOW
Without Grant Option: NONE

SQL>
SQL> REVOKE SHOW ON EMPLOYEES FROM [rdb,rdb_doc];
SQL> SHOW PROTECTION ON EMPLOYEES;
Protection on Table EMPLOYEES
[*,*]:
With Grant Option: NONE
Without Grant Option: SELECT

[RDB,RDB_DOC]:
With Grant Option: NONE
Without Grant Option: NONE

Example 3: Revoking column privileges

This example shows how to restrict privileges on a specific column by revoking
the UPDATE privilege that has been granted for that column.

SQL> SHOW PROTECTION ON COLUMN EMPLOYEES.EMPLOYEE_ID;
[RDB,RDB_DOC]:
With Grant Option: NONE
Without Grant Option: UPDATE

SQL> REVOKE UPDATE ON COLUMN EMPLOYEES.EMPLOYEE_ID FROM [rdb,rdb_doc];
SQL> SHOW PROTECTION ON COLUMN EMPLOYEES.EMPLOYEE_ID;
[RDB,RDB_DOC]:
With Grant Option: NONE
Without Grant Option: NONE

Example 4: Revoking DROP Privilege from a Sequence for a User

This example shows the action of REVOKE for a SEQUENCE in an ANSI style
database.

8–142 SQL Statements

REVOKE Statement: ANSI/ISO-Style

SQL> create sequence EMPLOYEE_ID_GEN;
SQL> grant select on sequence EMPLOYEE_ID_GEN to public;
SQL> grant all privileges on sequence EMPLOYEE_ID_GEN to stuart;
SQL> show protection on sequence EMPLOYEE_ID_GEN;
Protection on Sequence EMPLOYEE_ID_GEN
[DOCS,STUART]:
With Grant Option: NONE
Without Grant Option: SELECT,SHOW,ALTER,DROP,DBCTRL,REFERENCES

[DOCS,FREEMAN]:
With Grant Option: SELECT,SHOW,ALTER,DROP,DBCTRL,REFERENCES
Without Grant Option: NONE

[*,*]:
With Grant Option: NONE
Without Grant Option: SELECT

SQL> revoke drop on sequence EMPLOYEE_ID_GEN from stuart;
SQL> show protection on sequence EMPLOYEE_ID_GEN;
Protection on Sequence EMPLOYEE_ID_GEN
[DOCS,STUART]:
With Grant Option: NONE
Without Grant Option: SELECT,SHOW,ALTER,DBCTRL,REFERENCES

[DOCS,FREEMAN]:
With Grant Option: SELECT,SHOW,ALTER,DROP,DBCTRL,REFERENCES
Without Grant Option: NONE

[*,*]:
With Grant Option: NONE
Without Grant Option: SELECT

SQL>

SQL Statements 8–143

REVOKE Statement: Roles

REVOKE Statement: Roles

Revoke a role from another user or role.

Environment

You can use the REVOKE statement for roles:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a nonstored procedure in a nonstored SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

REVOKE <role-name> FROM <username>
ALL ROLES <role-name>

, PUBLIC
,

Arguments

ALL ROLES
Revokes all roles assigned to the users listed.

FROM username
FROM role-name
FROM PUBLIC
Specifies the user, role, or the PUBLIC user from which the specified role is to
be revoked.

role-name
The name of an existing role created with the CREATE ROLE statement or
created automatically by the GRANT statement.

Usage Notes

• You must have the SECURITY privilege on the database to revoke a role
from a user or another role.

8–144 SQL Statements

REVOKE Statement: Roles

Example

Example 1: Granting and Revoking Roles

SQL> -- Optionally, create three users and two roles.
SQL> -- Oracle Rdb automatically generates users and
SQL> -- roles if they are identified externally.
SQL> CREATE USER ABLOWNEY IDENTIFIED EXTERNALLY;
SQL> CREATE USER BGREMBO IDENTIFIED EXTERNALLY;
SQL> CREATE USER LWARD IDENTIFIED EXTERNALLY;
SQL> CREATE ROLE SALES_MANAGER IDENTIFIED EXTERNALLY;
SQL> CREATE ROLE DIVISION_MANAGER IDENTIFIED EXTERNALLY;
SQL> -- Grant the SALES_MANAGER role to users ABLOWNEY and
SQL> -- BGREMBO. Also grant the SALES_MANAGER role to the
SQL> -- DIVISION MANAGER ROLE.
SQL> GRANT SALES_MANAGER TO ABLOWNEY, BGREMBO, DIVISION_MANAGER;
SQL> -- Grant the DIVISION_MANAGER role to LWARD. LWARD now
SQL> -- has both the SALES_MANAGER and DIVISION_MANAGER roles.
SQL> GRANT DIVISION_MANAGER TO LWARD;
SQL> -- Revoke the DIVISION_MANAGER role from LWARD. He has
SQL> -- left the company.
SQL> REVOKE DIVISION_MANAGER FROM LWARD;
SQL> -- Grant the DIVISION_MANAGER role to BGREMBO. She
SQL> -- has been promoted to division manager.
SQL> GRANT DIVISION_MANAGER TO BGREMBO;

SQL Statements 8–145

ROLLBACK Statement

ROLLBACK Statement

Ends a transaction and undoes all changes you made since that transaction
began. The ROLLBACK statement also:

• Closes all open cursors (with the exception of WITH HOLD cursors)

• Releases all row locks

• Performs a checkpoint operation if fast commit processing is enabled

The ROLLBACK statement affects:

• All open databases included in the current transaction

• All changes to data made with SQL data manipulation statements
(DELETE, UPDATE, and INSERT)

• All changes to data definitions made with SQL data definition statements
(ALTER, CREATE, DROP, RENAME, GRANT, and REVOKE)

Environment

You can use the ROLLBACK statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

Rollback-statement =

ROLLBACK WORK
AND CHAIN

Arguments

AND CHAIN
Starts a new transaction implicitly using the same attributes as the rolled back
transaction.

8–146 SQL Statements

ROLLBACK Statement

WORK
Specifies an optional keyword that has no effect on the ROLLBACK statement.
It is provided for compatibility with the ANSI/ISO SQL standard.

Usage Notes

• You cannot use the ROLLBACK statement in an ATOMIC compound
statement.

• The ROLLBACK statement may not be executed from a SQL function or
trigger or any stored procedure called from a SQL function or trigger.

• The AND CHAIN clause is only permitted in a compound statement (i.e. in
a BEGIN . . . END block), or as the body of a stored procedure.

• When AND CHAIN is used a new transaction is implicitly started using
the same attributes as the rolled back transaction. Attributes such as
READ WRITE, READ ONLY, RESERVING, EVALUATING, WAIT, and
ISOLATION LEVEL are retained for the new transaction.

• Applications can use the AND CHAIN clause to simplify applications, since
the complex transaction attributes need only be specified once.

• When the SET FLAGS option TRANSACTION_PARAMETERS is specified
a line of output is written to identify the rolled-back and chained
transaction. Each SET TRANSACTION assigns a unique sequence number
which is displayed after each transaction action line.

• When the ROLLBACK statement is executed within a compound statement
and no transaction is active, a success status (SQLSTATE or SQLCODE) is
the result.

However, if the ROLLBACK statement is executed in a single statement, it
will result in an error. This behavior can be modified by setting the dialect
to SQL92 or SQL99, or by using the SET QUIET COMMIT statement.
Refer to the SET DIALECT and SET QUIET COMMIT statements for
more details. For SQL Module Language or SQL pre-compiler applications,
refer to the QUIET_COMMIT qualifier and the QUIET COMMIT clause in
the module header.

SQL Statements 8–147

ROLLBACK Statement

Examples

Example 1: Rolling back changes in a COBOL program

GET-ID-NUMBER.
DISPLAY "Enter employee ID number: "

WITH NO ADVANCING.
ACCEPT EMPLOYEE-ID.

CHANGE-SALARY.
DISPLAY "Enter new salary amount: "

WITH NO ADVANCING.
ACCEPT SALARY-AMOUNT.

EXEC SQL UPDATE SALARY_HISTORY
SET SALARY_AMOUNT = :SALARY-AMOUNT
WHERE EMPLOYEE_ID = :EMPLOYEE-ID
AND END_DATE IS NULL

END-EXEC

DISPLAY EMPLOYEE-ID, SALARY-AMOUNT.
DISPLAY "Is this figure correct? [Y or N] "

WITH NO ADVANCING.
ACCEPT ANSWER.
IF ANSWER = "Y" THEN

EXEC SQL COMMIT END-EXEC
ELSE

EXEC SQL ROLLBACK END-EXEC
DISPLAY "Please enter the new salary amount again."
GO TO CHANGE-SALARY

END-IF.

Example 2: Using COMMIT and AND CHAIN

The following simple example executes SET TRANSACTION once at the start
of the procedure. Then periodically the transaction is committed and restarted
using the COMMIT AND CHAIN syntax. This simplifies the application since
there is only one definition of the transaction characteristics.

8–148 SQL Statements

ROLLBACK Statement

SQL> -- process table in batches
SQL>
SQL> set compound transactions ’internal’;
SQL> set flags ’transaction,trace’;
SQL>
SQL> begin
cont> declare :counter integer = 0;
cont> declare :emp integer;
cont>
cont> set transaction
cont> read write
cont> reserving employees for exclusive write;
cont>
cont> for :emp in 0 to 600
cont> do
cont> begin
cont> declare :id char(5)
cont> default substring (cast (:emp+100000 as varchar(6))
cont> from 2 for 5);
cont> if exists (select * from employees where employee_id = :id)
cont> then
cont> trace ’found: ’, :id;
cont> if :counter > 20
cont> then
cont> commit and chain;
cont> set :counter = 1;
cont> else
cont> set :counter = :counter + 1;
cont> end if;
cont> end if;
cont> end;
cont> end for;
cont>
cont> commit;
cont> end;
~T Compile transaction (1) on db: 1
~T Transaction Parameter Block: (len=2)
0000 (00000) TPB$K_VERSION = 1
0001 (00001) TPB$K_WRITE (read write)
~T Start_transaction (1) on db: 1, db count=1
~T Rollback_transaction on db: 1
~T Compile transaction (3) on db: 1
~T Transaction Parameter Block: (len=14)
0000 (00000) TPB$K_VERSION = 1
0001 (00001) TPB$K_WRITE (read write)
0002 (00002) TPB$K_LOCK_WRITE (reserving) "EMPLOYEES" TPB$K_EXCLUSIVE
~T Start_transaction (3) on db: 1, db count=1
~Xt: found: 00164

.

.

.
~Xt: found: 00184

SQL Statements 8–149

ROLLBACK Statement

~Xt: found: 00185
~T Commit_transaction on db: 1
~T Prepare_transaction on db: 1
~T Restart_transaction (3) on db: 1, db count=1
~Xt: found: 00186

.

.

.
~Xt: found: 00205
~Xt: found: 00206
~T Commit_transaction on db: 1
~T Prepare_transaction on db: 1
~T Restart_transaction (3) on db: 1, db count=1
~Xt: found: 00207

.

.

.
~Xt: found: 00228
~Xt: found: 00229
~T Commit_transaction on db: 1
~T Prepare_transaction on db: 1
~T Restart_transaction (3) on db: 1, db count=1
~Xt: found: 00230

.

.

.
~Xt: found: 00249
~Xt: found: 00267
~T Commit_transaction on db: 1
~T Prepare_transaction on db: 1
~T Restart_transaction (3) on db: 1, db count=1
~Xt: found: 00276

.

.

.
~Xt: found: 00435
~Xt: found: 00471
~T Commit_transaction on db: 1
~T Prepare_transaction on db: 1
SQL>

8–150 SQL Statements

SELECT Statement: General Form

SELECT Statement: General Form

Specifies a result table. A result table is an intermediate table of values
derived from columns and rows of one or more tables or views that meet
conditions specified by a select expression. The tables or views that the
columns and rows come from are identified in the FROM clause of the
statement.

The basic element of a SELECT statement is called a select expression. Section
2.8.1 describes select expressions in detail.

To retrieve rows of a result table in host language programs, you must use
the DECLARE CURSOR statement or a special form of SELECT statement
called a singleton select. See the SELECT Statement: Singleton Select for
more information about a singleton select.

SQL evaluates the clauses of a SELECT statement in the following order:

1. FROM

2. WHERE

3. GROUP BY

4. HAVING

5. Select list

6. ORDER BY

7. OFFSET

8. LIMIT TO (or FETCH FIRST)

9. OPTIMIZE

After each of these clauses, SQL produces an intermediate result table that is
used in evaluating the next clause.

Environment

You can use the general form of the SELECT statement only in interactive and
dynamic SQL.

SQL Statements 8–151

SELECT Statement: General Form

Format

select-statement =

select-expr
for-update-clause optimize-clause

select-expr =

select-clause
(select-expr)
TABLE table-ref

select-merge-clause

order-by-clause offset-clause limit-to-clause

select-merge-clause =

EXCEPT
DISTINCT CORRESPONDING

INTERSECT NATURAL
DISTINCT

MINUS
UNION

ALL
DISTINCT

select-clause =

SELECT select-list
ALL
DISTINCT

FROM table-ref
,

WHERE predicate GROUP BY <column-name>
value-expr

,

HAVING predicate

8–152 SQL Statements

SELECT Statement: General Form

select-list =

*
value-expr

AS <name>
edit-using-clause

<table-name> . *
<view-name>
<correlation-name>

,

table-ref =

<table-name>
<view-name> correlation-name-clause
derived-table
joined-table

derived-table =

(select-expr)
joined-table

joined-table =

qualified-join
cross-join

(joined-table)

qualified-join =

table-ref JOIN table-ref
join-type

ON predicate
USING (<column-name>)

,
table-ref NATURAL JOIN table-ref

join-type

SQL Statements 8–153

SELECT Statement: General Form

cross-join =

table-ref CROSS JOIN table-ref

join-type =

INNER
LEFT OUTER
RIGHT
FULL

correlation-name-clause =

AS <correlation-name>
(<name-of-column>)

,

order-by-clause =

ORDER BY value-expr
<integer> ASC

DESC
,

offset-clause =

OFFSET skip-expression ROW
ROWS

limit-to-clause =

LIMIT TO limit-expression
OFFSET skip-expression ROW
SKIP skip-expression ROWS

skip-expression , limit-expression

FETCH FIRST ONLY
NEXT limit-expression ROW

ROWS

8–154 SQL Statements

SELECT Statement: General Form

for-update-clause =

FOR UPDATE
OF <column-name>

,

edit-using-clause =

EDIT USING edit-string
<domain-name>

optimize-clause =

OPTIMIZE FOR FAST FIRST
TOTAL TIME
SEQUENTIAL ACCESS

USING <outline-name>
WITH DEFAULT SELECTIVITY

SAMPLED
AGGRESSIVE

AS <query-name>

Arguments

EDIT USING edit-string
EDIT USING domain-name
Associates an edit string with a value expression. This clause overrides any
EDIT STRING defined for the columns or variables in the query. This clause is
only permitted for interactive SQL.

FOR UPDATE OF column-name
Specifies the columns in a cursor that you or your program might later modify
with an UPDATE statement. The column names in the FOR UPDATE clause
must belong to a table or view named in the FROM clause.

You do not have to specify the FOR UPDATE clause of the SELECT statement
to later modify rows using the UPDATE statement:

• If you do specify a FOR UPDATE clause with column names and later
specify columns in the UPDATE statement that are not in the FOR
UPDATE clause, SQL issues a warning message and proceeds with the
update modifications.

SQL Statements 8–155

SELECT Statement: General Form

• If you do specify a FOR UPDATE clause but do not specify any column
names, you can update any column using the UPDATE statement. SQL
does not issue any messages.

• If you do not specify a FOR UPDATE clause, you can update any column
using the UPDATE statement. SQL does not issue any messages.

The FOR UPDATE OF clause in a SELECT statement provides UPDATE
ONLY CURSOR semantics by locking all the rows selected.

OPTIMIZE AS query-name
Assigns a name to the query. You can define the RDMS$DEBUG_FLAGS
logical name or use SET FLAGS with the option ’STRATEGY’ to see the
access methods used to produce the results of the query. The following example
shows how to use the OPTIMIZE AS clause:

SQL> DELETE FROM EMPLOYEES E
cont> WHERE EXISTS (SELECT *
cont> FROM SALARY_HISTORY S
cont> WHERE S.EMPLOYEE_ID = E.EMPLOYEE_ID
cont> AND S.SALARY_AMOUNT > 75000)
cont> OPTIMIZE AS DEL_EMPLOYEE;
Leaf#01 FFirst RDB$RELATIONS Card=19

.

.

.
~Query Name : DEL_EMPLOYEE

.

.

.
7 rows deleted

OPTIMIZE FOR
Specifies the preferred optimizer strategy for statements that specify a select
expression. The following options are available:

• FAST FIRST

A query optimized for FAST FIRST returns data to the user as quickly as
possible, even at the expense of total throughput.

If a query can be cancelled prematurely, you should specify FAST FIRST
optimization. A good candidate for FAST FIRST optimization is an
interactive application that displays groups of records to the user, where
the user has the option of aborting the query after the first few screens.
For example, singleton SELECT statements default to FAST FIRST
optimization.

If the optimization level is not explicitly set, FAST FIRST is the default.

8–156 SQL Statements

SELECT Statement: General Form

• TOTAL TIME

If your application runs in batch, accesses all the records in the query,
and performs updates or writes a report, you should specify TOTAL TIME
optimization. Most queries benefit from TOTAL TIME optimization.

The following examples illustrate the DECLARE CURSOR syntax for
setting a preferred optimization mode:

SQL> DECLARE TEMP1 TABLE CURSOR
cont> FOR
cont> SELECT *
cont> FROM EMPLOYEES
cont> WHERE EMPLOYEE_ID > ’00400’
cont> OPTIMIZE FOR FAST FIRST;
SQL> --
SQL> DECLARE TEMP2 TABLE CURSOR
cont> FOR
cont> SELECT LAST_NAME, FIRST_NAME
cont> FROM EMPLOYEES
cont> ORDER BY LAST_NAME
cont> OPTIMIZE FOR TOTAL TIME;

• SEQUENTIAL ACCESS

Forces the use of sequential access. This is particularly valuable for tables
that use the strict partitioning functionality.

When the storage map of a table has the attribute PARTITIONING IS
NOT UPDATABLE, the mapping of data to a storage area is strictly
enforced. This is known as strict partitioning. When queries on such tables
use sequential access, the optimizer can eliminate partitions which do not
match the WHERE restriction rather than scan every partition.

The following example shows a query that deletes selected rows from a
specific partition. This table also includes several indexes, which may be
chosen by the optimizer. Therefore, the OPTIMIZE clause forces sequential
access.

SQL> delete from PARTS_LOG
cont> where parts_id between 10000 and 20000
cont> and expire_date < :purge_date
cont> optimize for sequential access;

Note that all access performed by such queries will be sequential. Care
should be taken that the I/O being used is acceptable by comparing similar
queries using index access.

OPTIMIZE USING outline-name
Explicitly names the query outline to be used with the select expression even if
the outline ID for the select expression and for the outline are different.

SQL Statements 8–157

SELECT Statement: General Form

The following example is the query used to create an outline named WOMENS_
DEGREES:

SQL> SELECT E.LAST_NAME, E.EMPLOYEE_ID, D.DEGREE, D.DEGREE_FIELD, D.YEAR_GIVEN
cont> FROM EMPLOYEES E, DEGREES D WHERE E.SEX = ’F’
cont> AND E.EMPLOYEE_ID = D.EMPLOYEE_ID
cont> ORDER BY LAST_NAME

By using the OPTIMIZE USING clause and specifying the WOMENS_
DEGREES outline, you can ensure that Oracle Rdb attempts to use the
WOMENS_DEGREES outline to execute a query even if the query is slightly
different as shown in the following example:

SQL> SELECT E.LAST_NAME, E.EMPLOYEE_ID, D.DEGREE, D.DEGREE_FIELD, D.YEAR_GIVEN
cont> FROM EMPLOYEES E, DEGREES D WHERE E.SEX = ’F’
cont> AND E.EMPLOYEE_ID = D.EMPLOYEE_ID
cont> ORDER BY LAST_NAME
cont> LIMIT TO 10 ROWS
cont> OPTIMIZE USING WOMENS_DEGREES;
~S: Outline WOMENS_DEGREES used <-- the query uses the WOMENS_DEGREES outline

.

.

.
E.LAST_NAME E.EMPLOYEE_ID D.DEGREE D.DEGREE_FIELD D.YEAR_GIVEN
Boyd 00244 MA Elect. Engrg. 1982
Boyd 00244 PhD Applied Math 1979
Brown 00287 BA Arts 1982
Brown 00287 MA Applied Math 1979
Clarke 00188 BA Arts 1983
Clarke 00188 MA Applied Math 1976
Clarke 00196 BA Arts 1978
Clinton 00235 MA Applied Math 1975
Clinton 00201 BA Arts 1973
Clinton 00201 MA Applied Math 1978
10 rows selected

See the CREATE OUTLINE Statement for more information on creating an
outline.

OPTIMIZE WITH
Selects one of three optimization controls: DEFAULT (as used by previous
versions of Oracle Rdb), AGGRESSIVE (assumes smaller numbers of rows
will be selected), and SAMPLED (which uses literals in the query to perform
preliminary estimation on indices).

select-expr
See Section 2.8.1 for a detailed description of select expressions.

8–158 SQL Statements

SELECT Statement: General Form

Usage Notes

• If an outline exists, Oracle Rdb uses the outline specified in the OPTIMIZE
USING clause unless one or more of the directives in the outline cannot be
followed. For example, if the compliance level for the outline is mandatory
and one of the indexes specified in the outline directives has been deleted,
the outline is not used. SQL issues an error message if an existing outline
cannot be used.

If you specify the name of an outline that does not exist, Oracle Rdb
compiles the query, ignores the outline name, and searches for an existing
outline with the same outline ID as the query. If an outline with the same
outline ID is found, Oracle Rdb attempts to execute the query using the
directives in that outline. If an outline with the same outline ID is not
found, the optimizer selects a strategy for the query for execution.

See the Oracle Rdb7 Guide to Database Performance and Tuning for more
information regarding query outlines.

Examples

Example 1: Using the SELECT statement

The following SELECT statement returns all rows from the EMPLOYEES
table in no specific order:

SQL> SELECT LAST_NAME, FIRST_NAME, MIDDLE_INITIAL FROM EMPLOYEES;
LAST_NAME FIRST_NAME MIDDLE_INITIAL
Toliver Alvin A
Smith Terry D
Dietrich Rick NULL
Kilpatrick Janet NULL
.
.
.

100 rows selected

SQL Statements 8–159

SELECT Statement: General Form

Example 2: Adding an ORDER BY clause to sort rows selected

An ORDER BY clause added to the same SELECT statement causes SQL to
sort the rows according to the LAST_NAME column.

SQL> SELECT LAST_NAME, FIRST_NAME, MIDDLE_INITIAL FROM
cont> EMPLOYEES ORDER BY LAST_NAME;
LAST_NAME FIRST_NAME MIDDLE_INITIAL
Ames Louie A
Andriola Leslie Q
Babbin Joseph Y
Bartlett Dean G
Bartlett Wes NULL
.
.
.

100 rows selected

Example 3: Adding a LIMIT TO clause to return a certain number of rows

The same SELECT statement with both an ORDER BY clause and a LIMIT
TO clause causes SQL to:

1. Sort all the rows of the EMPLOYEES table according to the LAST_NAME
column

2. Return the first five rows in the ordered set

SQL> SELECT LAST_NAME, FIRST_NAME, MIDDLE_INITIAL FROM
cont> EMPLOYEES ORDER BY LAST_NAME LIMIT TO 5 ROWS;
LAST_NAME FIRST_NAME MIDDLE_INITIAL
Ames Louie A
Andriola Leslie Q
Babbin Joseph Y
Bartlett Dean G
Bartlett Wes NULL
5 rows selected

8–160 SQL Statements

SELECT Statement: General Form

Example 4: Using the optimize clause to specify an outline and a query name

The following select query uses a previously defined outline called WOMENS_
DEGREES and also names the query. The RDMS$DEBUG_FLAGS logical has
been set to ‘‘Ss’’:

SQL> SELECT E.LAST_NAME, E.EMPLOYEE_ID, D.DEGREE,
cont> D.DEGREE_FIELD, D.YEAR_GIVEN
cont> FROM EMPLOYEES E, DEGREES D
cont> WHERE E.SEX = ’F’
cont> AND E.EMPLOYEE_ID = D.EMPLOYEE_ID
cont> ORDER BY LAST_NAME
cont> OPTIMIZE USING WOMENS_DEGREES
cont> AS WOMENS_DEGREES;
~Query Name : WOMENS_DEGREES
~S: Outline WOMENS_DEGREES used
Sort
Cross block of 2 entries
Cross block entry 1
Conjunct Get Retrieval by index of relation EMPLOYEES
Index name EMP_EMPLOYEE_ID [0:0]

Cross block entry 2
Leaf#01 BgrOnly DEGREES Card=165
BgrNdx1 DEG_EMP_ID [1:1] Fan=17

-- Rdb Generated Outline : 16-JUN-1994 11:01
create outline WOMENS_DEGREES
id ’D3A5BC351F507FED820EB704FC3F61E8’
mode 0
as (

query (
subquery (
EMPLOYEES 0 access path index EMP_EMPLOYEE_ID
join by cross to

DEGREES 1 access path index DEG_EMP_ID
)

)
)

compliance optional ;
E.LAST_NAME E.EMPLOYEE_ID D.DEGREE D.DEGREE_FIELD D.YEAR_GIVEN
Boyd 00244 MA Elect. Engrg. 1982
Boyd 00244 PhD Applied Math 1979
Brown 00287 BA Arts 1982
Brown 00287 MA Applied Math 1979
Clarke 00188 BA Arts 1983
Clarke 00188 MA Applied Math 1976
Clarke 00196 BA Arts 1978
.
.
.

61 rows selected

SQL Statements 8–161

SELECT Statement: General Form

Example 5: Associating an Edit String with a Value Expression

SQL> CREATE DOMAIN MONEY INTEGER(2)
cont> EDIT STRING ’$$$,$$$,$$9.99’;
SQL> --Calculate the average salary for all current jobs.
SQL> SELECT EMPLOYEE_ID,
cont> AVG(SALARY_AMOUNT) AS AVERAGE EDIT USING MONEY,
cont> MAX(SALARY_AMOUNT) AS MAXIMUM EDIT USING MONEY,
cont> MAX(SALARY_START) AS START_DATE EDIT USING ’YYYBDDBMMMBWWW’
cont> FROM SALARY_HISTORY
cont> WHERE SALARY_END IS NULL
cont> GROUP BY EMPLOYEE_ID;
EMPLOYEE_ID AVERAGE MAXIMUM START_DATE
00164 $51,712.00 $51,712.00 983 14 Jan Fri
00165 $11,676.00 $11,676.00 982 1 Jul Thu
00166 $18,497.00 $18,497.00 982 7 Aug Sat
00167 $17,510.00 $17,510.00 982 21 Aug Sat
.
.
.

00435 $84,147.00 $84,147.00 982 12 Mar Fri
00471 $52,000.00 $52,000.00 982 15 Aug Sun
100 rows selected

Example 6: Using the ORDER BY Clause with a Value Expression

SQL> SELECT * FROM EMPLOYEES
cont> ORDER BY EXTRACT (YEAR FROM BIRTHDAY),
cont> TRIM(FIRST_NAME) || TRIM(LAST_NAME);
00190 O’Sullivan Rick G.
78 Mason Rd. NULL Fremont

NH 03044 M 12-Jan-1923 1 None
00231 Clairmont Rick NULL
92 Madiso7 Drive NULL Chocorua

NH 03817 M 23-Dec-1924 2 None
00183 Nash Walter V.
197 Lantern Lane NULL Fremont

NH 03044 M 19-Jan-1925 1 None
00177 Kinmonth Louis NULL
76 Maple St. NULL Etna

NH 03750 M 7-Apr-1926 1 None
00240 Johnson Bill R.
20 South St NULL Milford

NH 03055 M 13-Apr-1927 2 None
.
.
.

8–162 SQL Statements

SELECT Statement: General Form

Example 7: Using the GROUP BY Clause with a Value Expression

SQL> SELECT COUNT (*), EXTRACT (YEAR FROM BIRTHDAY)
cont> FROM EMPLOYEES
cont> GROUP BY EXTRACT (YEAR FROM BIRTHDAY);

1 1923
1 1924
1 1925
1 1926
4 1927

2 1928
1 1930
2 1931

.

.

.

Example 8: Performing an Outer Join with Oracle Database Style Syntax

SQL> SELECT EMPLOYEES.EMPLOYEE_ID, JOB_CODE
cont> FROM EMPLOYEES, CURRENT_JOB
cont> WHERE EMPLOYEES.EMPLOYEE_ID= CURRENT_JOB.EMPLOYEE_ID(+);
EMPLOYEES.EMPLOYEE_ID CURRENT_JOB.JOB_CODE
00164 DMGR
00165 ASCK
00166 DMGR
00167 APGM
00168 DMGR
00169 SPGM
00170 SCTR
00171 PRGM
.
.
.

SQL Statements 8–163

SELECT Statement: Singleton Select

SELECT Statement: Singleton Select

Specifies a result table. A result table is an intermediate table of values
derived from columns and rows of one or more tables or views that meet
conditions specified by a select expression. The tables or views that the
columns and rows come from are identified in the FROM clause of the
statement.

The basic element of a SELECT statement is called a select expression. Section
2.8.1 describes select expressions in detail.

To retrieve rows of a result table in host language programs, you must use the
DECLARE CURSOR statement or a special form of SELECT statement called
a singleton select. A singleton select statement specifies a one-row result
table, and is allowed in either precompiled programs or as part of a procedure
in an SQL module. A singleton select includes an additional clause, INTO, to
assign the values in the row to host language variables in a program.

For information on the general form of the SELECT statement, see the
SELECT Statement: General Form.

Environment

You can use a singleton select statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

8–164 SQL Statements

SELECT Statement: Singleton Select

singleton-select =

SELECT select-list
ALL
DISTINCT

into-target

FROM table-ref
,

WHERE predicate
GROUP BY <column-name>

,

HAVING predicate limit-to-clause

for-update-clause optimize-clause

into-target =
INTO <parameter>

<qualified-parameter>
<variable>

,

for-update-clause =

FOR UPDATE
OF <column-name>

,

optimize-clause =

OPTIMIZE FOR FAST FIRST
TOTAL TIME
SEQUENTIAL ACCESS

USING <outline-name>
WITH DEFAULT SELECTIVITY

SAMPLED
AGGRESSIVE

AS <query-name>

SQL Statements 8–165

SELECT Statement: Singleton Select

Arguments

INTO parameter
INTO qualified-parameter
INTO variable
Specifies a list of parameters, qualified parameters (structures), or variables
to receive values from the columns of the one-row result table. The variables
named must have been declared in the host program. If a variable named in
the list is a host structure, SQL considers the reference the same as a reference
to each of the elements of the host structure.

If the number of variables specified, either explicitly or by reference to a host
structure, does not match the number of values in the row of the result table,
SQL generates an error when it precompiles the program or compiles the SQL
module file.

If columns in the result table from a singleton select include null values, the
corresponding parameters must include indicator parameters.

select-list
For a description of select lists, see Section 2.8.1.

Usage Notes

• The following restrictions distinguish a singleton select from a SELECT
statement. A singleton select cannot:

Specify a result table that is longer than a single row (SQL generates
an error if it does)

Omit the INTO clause

• To ensure that only one row is returned with a SINGLETON SELECT
statement, use the LIMIT TO 1 ROW clause. For more information on the
LIMIT TO clause, see Section 2.8.1.

8–166 SQL Statements

SET Statement

SET Statement

Changes the characteristics of SQL terminal sessions. You can control the:

• Currency indicator to be displayed for output

• Display format for date values, time values, or both

• Default path name in the data dictionary

• Digit separator to be displayed for output

• Number of statements to be included in the editing buffer when you type
EDIT *

• Language to be used for month abbreviations, and so on, in date and time
input and display

• Length of lines to be displayed for output

• Page length for HELP display

• File in which the session is recorded

• Number of rows output, the number of seconds allowed per query
compilation and execution, or the amount of CPU time expended for each
query compilation and execution

• Character used to display the radix point in output

• Display of statements from a command file

• Display of warning messages about deprecated features

• Display of warning messages about nonstandard syntax

• Continue character

Environment

You can use these SET statements in interactive SQL only.

SQL Statements 8–167

SET Statement

Format

SET CURRENCY SIGN currency-char
set-date-format
CONTINUE CHARACTER continue-char
DICTIONARY <path-name>
DIGIT SEPARATOR digit-sep-char
set-edit
EXECUTE
NOEXECUTE
LANGUAGE language-name
LINE LENGTH <n>
set-output
PAGE LENGTH <n>
RADIX POINT radix-char
VERIFY
NOVERIFY
set-warning
set-flagger
sql-plus-options

set-date-format=

DATE FORMAT DATE <date-number>
, TIME <time-number>

TIME <time-number>
, DATE <date-number>

set-edit=

EDIT KEEP <n>
NOKEEP
PURGE

set-output=

LOGFILE
(logfile-options) quoted-filespec

OUTPUT
<file-spec>

NOLOGFILE
NOOUTPUT

8–168 SQL Statements

SET Statement

logfile-options =

ECHO
NOECHO

set-warning=

WARNING DEPRECATE
NODEPRECATE

set-flagger =

FLAGGER ON
SQL89
SQL92_ENTRY ON
MIA OFF
OFF

sql-plus-options =

ECHO ON
HEADING OFF
TIMING
FEEDBACK ON

OFF
numeric-literal

LINESIZE numeric-literal
PAGESIZE
NULL

literal-string

Arguments

CONTINUE CHARACTER
Defines the continuation character for interactive SQL. By selecting a seldom
used character the database administrator can avoid problems with the minus
sign to use a continuation character in scripts.

CURRENCY SIGN currency-char
Specifies the currency indicator to be displayed in output. (SQL produces
currency indicators in output when you specify the dollar sign ($) edit string
for the column. See Section 2.5.2 for more information on edit strings.)

SQL Statements 8–169

SET Statement

If you do not specify an alternate character, the default is either the dollar
sign ($) or the value specified by the logical name SYS$CURRENCY.

DATE date-number
Specifies the display format for date values.

You must enter a number for the date-number argument. This number
corresponds to numbers in the date format logical names listed in tables in the
OpenVMS run-time library documentation.

For example, LIB$DATE_FORMAT_006 is one of the logical names in the
table. The logical name specifies the format in which the eighth day of May in
the year 1957 would be displayed as 8 May 57. Note that the latter part of the
logical name is the number 006.

If you wanted to specify the 8 May 57 format using the SET DATE FORMAT
statement, you would use the numeric part of the LIB$DATE_FORMAT_006
logical name, 6. You do not have to enter any leading zeros that the number
might have.

If you do not specify a date format, the default is dd-mmm-yyyy.

DATE FORMAT
Specifies the display format for either date values, time values, or both.

You must specify a numeric argument with the DATE and TIME portions
of the SET DATE FORMAT statement. This numeric argument is the same
as the numeric portion of certain OpenVMS Run-Time Library formats. The
formats are documented in the OpenVMS run-time library documentation.
(This statement only accepts numbers that reference OpenVMS format date
and time logical names; it does not support the ANSI/ISO date and time data
types.)

The SET DATE FORMAT DATE and SET DATE FORMAT TIME statements
change only the output for the date or time formats. If you want to change
the input format, use the logical name LIB$DT_INPUT_FORMAT. You must
run the command procedure SYS$MANAGER:LIB$DT_STARTUP.COM before
using any of the run-time library date-time routines for input or output formats
other than the default. The LIB$DT_STARTUP.COM procedure also defines
spellings for date and time elements in languages other than English. See the
OpenVMS run-time library documentation for more information on LIB$DT_
INPUT_FORMAT.

DICTIONARY path-name
Changes your default repository path name to the path name you specify.

8–170 SQL Statements

SET Statement

DIGIT SEPARATOR digit-sep-char
Changes the output displaying the digit separator to the specified character.
The digit separator is the symbol that separates groups of three digits in
values greater than 999. For example, the comma is the digit separator in the
number 1,000.

(SQL produces digit separators in output when you specify the comma (,) edit
string for the column. See Section 2.5.2 for more information on edit strings.)

You must enclose the digit-sep-char argument within single quotation marks.

If you do not specify an alternate character, the default is either the comma (,)
or the value specified by the logical name SYS$DIGIT_SEP.

EDIT
Controls the size of the editing buffer that you create when you use the EDIT
statement with a wildcard as the argument.

• SET EDIT KEEP n

Tells SQL to save the previous n statements. For example, assume you
have specified SET EDIT KEEP 5. When you type EDIT *, SQL places the
previous five statements in the editing buffer. The number you specify with
SET EDIT KEEP is the maximum number of statements you can recall
with the EDIT statement. The default is 20.

• SET EDIT NOKEEP

This statement is equivalent to SET EDIT KEEP 0. If you use this form
of the statement and you type EDIT or EDIT *, your editing buffer will be
empty. This form of the statement saves system resources when you are
running command files rather than an interactive process.

• SET EDIT PURGE

This statement retains the value of the KEEP parameter but purges all
previous statements. As with SET EDIT NOKEEP, if you use the SET
EDIT PURGE statement and then EDIT or EDIT *, your editing buffer will
be empty. Unlike the SET EDIT NOKEEP statement, however, SET EDIT
PURGE causes SQL to accumulate subsequent statements to place in the
editing buffer when you issue EDIT statements later in the interactive
session.

EXECUTE
NOEXECUTE
NO EXECUTE
Instructs SQL whether to execute the data manipulation statements you issue
in an interactive SQL session. See the Examples to see how you could use the

SQL Statements 8–171

SET Statement

NOEXECUTE option to check for proper syntax before you issue a statement
against a database.

You can use the NOEXECUTE option in conjunction with the SET FLAGS to
examine the estimated cost and access strategy associated with a query. If
you specify SET NOEXECUTE, SQL displays the access strategies without
executing the query. SQL also allows you to specify NO EXECUTE (as two
words); this has the same meaning as NOEXECUTE.

If you do not specify EXECUTE or NOEXECUTE, the default is EXECUTE.

The SET TRANSACTION statement is not executed when SET NO EXECUTE
is active. Start or declare a transaction prior to using SET NO EXECUTE.

FLAGGER OFF
Disables all previously set flaggers indicating nonstandard syntax. This is the
default.

FLAGGER ON
FLAGGER SQL89
FLAGGER SQL92_ENTRY
FLAGGER MIA
Controls the output of informational messages that indicate nonstandard
syntax, that is, extensions to the ANSI/ISO standard syntax or the MIA
standard syntax.

If you specify SET FLAGGER ON, which is the same as specifying SET
FLAGGER SQL92_ENTRY ON, SQL sends you an informational message if
you issue a subsequent interactive SQL statement that contains syntax that is
an extension to the ANSI/ISO standard.

If you specify SET FLAGGER MIA ON, SQL sends you an informational
message if you issue a subsequent interactive SQL statement that contains
syntax that is an extension to the MIA standard.

The flaggers are independent of each other and any combination of flaggers can
be set at one time.

The default is FLAGGER OFF if you do not explicitly set a flagger on.

FEEDBACK { ON | OFF | n }
SET FEEDBACK ON is a synonym for the SQL SET DISPLAY NO ROW
COUNTER statement. SQL data manipulation statements such as SELECT,
DELETE, UPDATE, and INSERT will display the number of affected rows.
SET FEEDBACK n sets a limit value which turns on feedback only if more
than ’n’ rows are displayed. SET FEEDBACK 0 is synonymous with SET
FEEDBACK ON. SET FEEDBACK OFF is a synonym for the SQL SET

8–172 SQL Statements

SET Statement

DISPLAY ROW COUNTER statement. SQL data manipulation statements no
longer display the count of affected rows.

SQL> set feedback 2
SQL> select * from work_status;
STATUS_CODE STATUS_NAME STATUS_TYPE
0 INACTIVE RECORD EXPIRED
1 ACTIVE FULL TIME
2 ACTIVE PART TIME
3 rows selected
SQL> set feedback 4
SQL> select * from work_status;
STATUS_CODE STATUS_NAME STATUS_TYPE
0 INACTIVE RECORD EXPIRED
1 ACTIVE FULL TIME
2 ACTIVE PART TIME

LANGUAGE language-name
Specifies the language to be used for translation of month names and
abbreviations in date and time input and display. The language-name
argument also determines the translation of other language-dependent
text, such as the translation for the date literals YESTERDAY, TODAY,
and TOMORROW.

If you do not specify a language, the default is the language specified by
the logical name SYS$LANGUAGE. If you require different language
spellings, you must define the logical name SYS$LANGUAGES in
addition to SYS$LANGUAGE. You must run the command procedure
SYS$MANAGER:LIB$DT_STARTUP.COM after defining SYS$LANGUAGES.
For example:

$ DEFINE SYS$LANGUAGES FRENCH, GERMAN, SPANISH
$ RUN SYS$MANAGER:LIB$DT_STARTUP.COM
$ SHOW LOGICAL SYS$LANGUAGES

"SYS$LANGUAGES" = "FRENCH" (LNM$SYSTEM_TABLE)
= "GERMAN"
= "SPANISH"

$ SHOW LOGICAL SYS$LANGUAGE
"SYS$LANGUAGE" = "ENGLISH" (LNM$SYSTEM_TABLE)

If you do not define SYS$LANGUAGES, all translation routines default
to English. See the OpenVMS run-time library documentation for more
information on LIB$DT_STARTUP.COM.

The SET LANGUAGE statement does not affect the collating sequences used
for sorting and comparing data. The CREATE COLLATING SEQUENCE
statement specifies alternate collating sequences.

SQL Statements 8–173

SET Statement

LINE LENGTH n
LINESIZE n
Specifies an alternate line length for SQL output.

You must enter a number n to designate the line length. The number n can be
any number up to 65535 octets.

You can use the SET LINE LENGTH (or SET LINESIZE) statement to specify
an alternate width for output that you are sending to a file or to an alternate
output device.

LOGFILE quoted-filespec
This statement allows the executing SQL script to save output to an OpenVMS
file.

Output from interactive SQL will be written to the file-spec specified. If the
ECHO logfile-option is used, in addition to writing the output to the designated
file, all commands and errors generated by interactive SQL are also written to
SYS$OUTPUT. If the NOECHO logfile-option is used, output to SYS$OUTPUT
is disabled. All commands and errors generated by interactive SQL are only
written to the output file.

The SET LOGFILE is functionally equivalent to the SET OUTPUT statement.

A SET LOGFILE command that does not specify a file is equivalent to SET
NOLOGFILE.

NOLOGFILE
Closes the current output file specified by a prior SET LOGFILE (or SET
OUTPUT command).

NOOUTPUT
Suspends writing to the output file.

NOVERIFY
Does not display indirect command files. The default setting is the setting
currently in effect for DCL commands. If you have not explicitly changed the
DCL setting to VERIFY, the default is NOVERIFY.

OUTPUT file-spec
Names the target file for output. The default file extension is .lis.

If you specify OUTPUT with a file name, SQL writes its output to a log file
that you specify. The log file contains both statements and results. If you issue
a SET OUTPUT statement, output is also written to standard output which is
usually the terminal.

8–174 SQL Statements

SET Statement

If you specify OUTPUT without a file name, SQL suspends writing output to a
log file, if any, and writes the output to the standard output. In other words,
the SET OUTPUT statement without a file name is equivalent to the SET
NOOUTPUT statement.

SQL displays certain items (such as the headings produced by the SHOW
statement) in boldface type on your terminal screen. In log files, however,
the boldface items are surrounded by escape characters. You can ignore these
escape characters, edit them out of your log file, or set your terminal so that
SQL does not display characters in boldface type.

If you disable boldface type using the following DCL command, your log file
will not contain escape characters:

$ SET TERM/NOANSI_CRT

PAGE LENGTH n
PAGESIZE n
Sets the size of a page in SQL help.

The following notes apply to the PAGE LENGTH (or PAGESIZE) clause:

• The integer value must be a value between 10 and 32767.

• SET PAGE LENGTH (or SET PAGESIZE) can be used to effectively disable
the paging performed by help by setting the length to a high value such as
32000.

• The page length is automatically set upon entry to interactive SQL and is
based on the OpenVMS terminal setting for this session.

• The SHOW DISPLAY command can be used to view the currently defined
page length.

RADIX POINT radix-char
Changes the output displaying the radix point to the specified character. The
radix point is the symbol that separates units from decimal fractions. For
example, in the number 98.6, the period is the radix point.

You must enclose the radix-char argument within single quotation marks.

If you do not specify an alternate character, the default is either the period (.)
or the value specified by the logical name SYS$RADIX_POINT.

sql-plus-options
These statements are provided for use with SQL*Plus scripts that are run
against Oracle Rdb.

SQL Statements 8–175

SET Statement

Table 8–3 Supported SQL*Plus SET statements

SQL*Plus command Equivalent Oracle Rdb statement

SET ECHO ON SET VERIFY
SET ECHO OFF SET NOVERIFY
SET HEADING ON SET DISPLAY QUERY HEADER
SET HEADING OFF SET DISPLAY NO QUERY HEADER
SET FEEDBACK ON SET DISPLAY ROW COUNTER
SET FEEDBACK OFF SET DISPLAY NO ROW COUNTER
SET NULL SET DISPLAY DEFAULT NULL

STRING
SET NULL ’literal’ SET DISPLAY NULL STRING

’literal’

TIME time-number
Specifies the display format for time values.

You must enter a number for the time-number argument. This number
corresponds to numbers in the time-format logical names listed in tables in the
OpenVMS run-time library documentation.

For example, the table contains the logical name LIB$TIME_FORMAT_020.
The logical name specifies the format in which the eighth hour, fourth minute,
and thirty-second second of a day would be displayed as 8 h 4 min 32 s. Note
that the latter part of the logical name is the number 020.

If you wanted to specify the 8 h 4 min 32 s format for the SQL SET DATE
FORMAT TIME statement, you would use the numeric part of the LIB$TIME_
FORMAT_020 logical name, 20. You do not have to enter any leading zeros
that the number might have.

If you do not specify a time format, the default is hh:mm:ss.cc.

TIMING { ON | OFF }
The SET TIMING statement enables a single line report of used CPU and
Elapsed time for each successful SQL statement or command.

8–176 SQL Statements

SET Statement

SQL> start transaction;
SQL> set timing on;
SQL> select count(*)
cont> from employees
cont> inner join job_history using (employee_id)
cont> inner join salary_history using (employee_id)
cont> inner join departments using (department_code)
cont> inner join jobs using (job_code)
cont> left outer join resumes using (employee_id)
cont> left outer join degrees using (employee_id)
cont> left outer join colleges using (college_code)
cont>
cont> ;

3871
1 row selected
Timing: Elapsed: 0 00:00:00.82 Cpu: 0 00:00:00.16
SQL> set timing off;
SQL> commit;

VERIFY
Displays indirect command files at your terminal as you run them.

WARNING DEPRECATE
WARNING NODEPRECATE
Specifies whether or not interactive SQL displays diagnostic messages when
you issue statements containing obsolete SQL syntax. Deprecated or obsolete
syntax is syntax that was allowed in previous versions of SQL but has been
changed. Oracle Rdb recommends that you avoid using such syntax because it
may not be supported in future versions. By default, SQL displays a warning
message after any statement containing obsolete syntax (SET WARNING
DEPRECATE).

If you specify SET WARNING NODEPRECATE, SQL does not display any
messages about obsolete syntax.

Usage Notes

• The SET LANGUAGE statement does not affect the collating sequences
used for sorting and comparing data. The CREATE COLLATING
SEQUENCE statement specifies alternate collating sequences.

• You cannot use the SET LANGUAGE statement in dynamic SQL; instead,
you should use the logical name SYS$LANGUAGE as documented in
Table 8–4.

SQL Statements 8–177

SET Statement

• The SET RADIX POINT statement changes the radix point only in the
output display. It does not change the input character; the input character
must always be a period.

• The SET DIGIT SEPARATOR statement changes the digit separator only
in the output display. You cannot use a digit separator when inserting
data.

• The alternate date and time formats allowed by the SET DATE FORMAT
statement affect only date string text literals and their conversion to and
from binary dates.

• The SET DATE FORMAT statement will not override input and output
formats that you specified using an edit string.

• To produce the default currency indicator or digit separator, you must
specify an edit string for that column or use the EDIT USING clause on
SELECT.

• Table 8–4 lists the logical names you can use to internationalize the SET
statement. You can specify the currency sign, date and time output format,
digit separator, language, and radix point.

Table 8–4 Logical Names for Internationalization of SET Statements

SQL SET Statement
Related System
Logical Name

CURRENCY SIGN SYS$CURRENCY

DATE FORMAT DATE date-number LIB$DT_FORMAT
DATE FORMAT TIME time-number LIB$DT_FORMAT
DIGIT SEPARATOR SYS$DIGIT_SEP

LANGUAGE SYS$LANGUAGE

RADIX POINT SYS$RADIX_POINT

If you want to change the input format for dates and time, you must use
the logical name LIB$DT_INPUT_FORMAT documented in the OpenVMS
run-time library documentation. The SET DATE FORMAT DATE and SET
DATE FORMAT TIME statements in SQL change only the date and time
formats for output displays.

8–178 SQL Statements

SET Statement

• The SET FLAGGER ON statement is equivalent to the SET FLAGGER
SQL92_ENTRY ON statement.

• You can set flaggers on and off independent of each other. For example:

SQL> SHOW FLAGGER
The flagger mode is OFF
SQL> --
SQL> SET FLAGGER SQL89 ON;
SQL> SHOW FLAGGER
%SQL-I-NONSTASYN89, Nonstandard SQL89 syntax
The SQL89 flagger mode is ON
SQL> --
SQL> SET FLAGGER MIA ON;
%SQL-I-NONSTASYN89, Nonstandard SQL89 syntax
SQL> SHOW FLAGGER
%SQL-I-NONSTASYN89, Nonstandard SQL89 syntax
The SQL89 flagger mode is ON
The MIA flagger mode is ON
SQL> --
SQL> SET FLAGGER SQL92_ENTRY ON;
%SQL-I-NONSTASYN, Nonstandard syntax
%SQL-I-NONSTASYN89, Nonstandard SQL89 syntax
SQL> SHOW FLAGGER
%SQL-I-NONSTASYN89, Nonstandard SQL89 syntax
%SQL-I-NONSTASYN92E, Nonstandard SQL92 Entry-level syntax
The SQL89 flagger mode is ON
The SQL92 Entry-level flagger mode is ON
The MIA flagger mode is ON
SQL> --
SQL> SET FLAGGER SQL89 OFF;
%SQL-I-NONSTASYN, Nonstandard syntax
%SQL-I-NONSTASYN89, Nonstandard SQL89 syntax
%SQL-I-NONSTASYN92E, Nonstandard SQL92 Entry-level syntax
SQL> SHOW FLAGGER;
%SQL-I-NONSTASYN92E, Nonstandard SQL92 Entry-level syntax
The SQL92 Entry-level flagger mode is ON
The MIA flagger mode is ON

• You cannot redefine standard output to redirect output to a file. Use the
SET OUTPUT statement to redirect the output to a file.

• The continuation character must be a valid SQL language terminator.
These characters are: ’#’, ’(’, ’)’, ’*’, ’+’, ’,’, ’-’, ’.’, ’/’, ’:’, ’;’, ’?’, ’[’, ’\ ’, ’]’, ’{’, ’ | ’,
and ’}’.

• Currently only single octet values are supported by Interactive SQL.

• Use the SHOW CONTINUE CHARACTER to display the current
continuation character.

SQL Statements 8–179

SET Statement

Examples

Example 1: Using the SET statement to set up terminal session characteristics

Using the SET statement as follows, you can set up the characteristics of your
terminal session:

SQL> --
SQL> -- You can put the SET statements in your sqlini file, which sets up
SQL> -- your SQL session.
SQL> --
SQL> SET OUTPUT ’LOG.LIS’
SQL> SET DICTIONARY ’CDD$TOP.DEPT3’
SQL> SET EDIT KEEP 10
SQL> --
SQL> ATTACH ’ALIAS PERS FILENAME personnel’;
SQL> SHOW ALIAS
Alias PERS:

Rdb database in file personnel
SQL> EXIT

In the preceding example, the statements set up the characteristics, as follows:

• The SET OUTPUT statement opens a file called LOG.LIS in the current
default path name. From this point on, all the input and output, including
error messages, appear in this file. The following example shows what is
written to the log file LOG.LIS:

SET DICTIONARY ’CDD$TOP.DEPT3’
SET EDIT KEEP 10
--
ATTACH ’ALIAS PERS FILENAME personnel’;
SHOW ALIAS
Alias PERS:

Rdb database in file personnel
EXIT

• The SET DICTIONARY statement changes the default repository path
name.

• The SET EDIT KEEP statement specifies that you get the 10 previous
statements in the editing buffer when you type EDIT *.

• The ATTACH statement attaches to the personnel database and declares
the alias PERS for that database.

• The SHOW ALIAS statements tell the user which alias is declared.

Example 2: SET CURRENCY SIGN and SET DIGIT SEPARATOR statements

8–180 SQL Statements

SET Statement

The following example uses the SET DIGIT SEPARATOR statement to show
the behavior of the SET CURRENCY SIGN and SET DIGIT SEPARATOR
statements when used with edit strings:

SQL> --
SQL> -- This example shows the edit string ’ZZZ,ZZZ’,
SQL> -- which specifies the comma as the default digit separator.
SQL> --
SQL> ALTER TABLE SALARY_HISTORY -
cont> ALTER SALARY_AMOUNT EDIT STRING ’ZZZ,ZZZ’;
SQL> SELECT SALARY_AMOUNT FROM SALARY_HISTORY;
SALARY_AMOUNT

26,291
51,712
26,291
50,000
.
.
.

SQL> --
SQL> -- Now use the SET DIGIT SEPARATOR statement to specify that
SQL> -- the period will be the digit separator instead of
SQL> -- the comma.
SQL> --
SQL> SET DIGIT SEPARATOR ’.’
SQL> SELECT SALARY_AMOUNT FROM SALARY_HISTORY;
SALARY_AMOUNT

26.291
51.712
26.291
50.000

.

.

.

Example 3: Using the internationalization features of the SET statement

The following example shows how to use the various SET statements to
internationalize your applications:

SQL Statements 8–181

SET Statement

SQL> --
SQL> -- This first statement specifies the dollar sign
SQL> -- as the currency indicator. It does this by using
SQL> -- the edit string ’$(9).99’.
SQL> --
SQL> ALTER TABLE SALARY_HISTORY -
cont> ALTER SALARY_AMOUNT EDIT STRING ’$(9).99’;
cont> SELECT SALARY_AMOUNT FROM SALARY_HISTORY;
SALARY_AMOUNT

$26291.00
$51712.00
$26291.00
$50000.00

.

.

.
SQL> --
SQL> -- The SET CURRENCY statement now changes the currency
SQL> -- indicator to the British pound sign, £. Notice
SQL> -- the changed output.
SQL> --
SQL> SET CURRENCY SIGN ’£’
SQL> SELECT SALARY_AMOUNT FROM SALARY_HISTORY;
SALARY_AMOUNT

£26291.00
£51712.00
£26291.00
£50000.00
£11676.00

.

.

.
SQL> --
SQL> -- The next examples show the SET DATE FORMAT statement.
SQL> --
SQL> -- The SET DATE FORMAT statement will not override input
SQL> -- and output formats that you have specified with an edit
SQL> -- string. The following SET DATE FORMAT examples use the
SQL> -- SALARY_START and SALARY_END columns. The SALARY_START
SQL> -- and SALARY_END columns are defined by the domain
SQL> -- DATE_DOM, which uses the edit string ’DD-MMM-YYY’.
SQL> -- Thus, to test the SET DATE FORMAT statement, you must
SQL> -- first remove the edit string from the DATE_DOM domain
SQL> -- using the following ALTER DOMAIN statement:
SQL> --
SQL> ALTER DOMAIN DATE_DOM NO EDIT STRING;

8–182 SQL Statements

SET Statement

SQL> --
SQL> -- The next statement inserts a row with time information.
SQL> -- The subsequent SET DATE FORMAT statements will use this row:
SQL> --
SQL> INSERT INTO SALARY_HISTORY
cont> -- list of columns:
cont> (EMPLOYEE_ID,
cont> SALARY_AMOUNT,
cont> SALARY_START,
cont> SALARY_END)
cont> VALUES
cont> -- list of values:
cont> (’88339’,
cont> ’22550’,
cont> ’14-NOV-1967 08:30:00.00’,
cont> ’25-NOV-1988 16:30:00.00’)
cont> ;
1 row inserted
SQL> --
SQL> -- Using the row that was just inserted, the following statement
SQL> -- shows the default date and time output:
SQL> --
SQL> SELECT SALARY_START, SALARY_END FROM SALARY_HISTORY-
cont> WHERE EMPLOYEE_ID = ’88339’;
SALARY_START SALARY_END
14-NOV-1967 08:30:00.00 25-NOV-1988 16:30:00.00
1 row selected
SQL> --
SQL> -- The SET DATE FORMAT DATE statement customizes the
SQL> -- output of the date format.
SQL> --
SQL> -- The output will appear in the form
SQL> -- 14 NOV 67, as specified by the date-number argument 6.
SQL> --
SQL> SET DATE FORMAT DATE 6;
SQL> SELECT SALARY_START, SALARY_END FROM SALARY_HISTORY-
cont> WHERE EMPLOYEE_ID = ’88339’;
SALARY_START SALARY_END
14 NOV 67 25 NOV 88
1 row selected
SQL> --
SQL> -- The SET DATE FORMAT TIME statement customizes
SQL> -- the output of the time format. The output will appear
SQL> -- in the form 16 h 30 min 0 s, as specified by the
SQL> -- time-number argument 20.
SQL> --
SQL> SET DATE FORMAT TIME 20;
SQL> SELECT SALARY_START, SALARY_END FROM SALARY_HISTORY-
cont> WHERE EMPLOYEE_ID = ’88339’;
SALARY_START SALARY_END
8 h 30 min 0 s 16 h 30 min 0 s
1 row selected

SQL Statements 8–183

SET Statement

SQL> --
SQL> -- Note that the previous date example has deleted
SQL> -- the time output, and the previous time example has
SQL> -- deleted the date output.
SQL> --
SQL> -- If you want the display to continue to show
SQL> -- BOTH date and time, you must specify
SQL> -- both arguments with the SET DATE statement.
SQL> --
SQL> SET DATE FORMAT DATE 6, TIME 20;
SQL> SELECT SALARY_START, SALARY_END FROM SALARY_HISTORY-
cont> WHERE EMPLOYEE_ID = ’88339’;
SALARY_START SALARY_END
14 NOV 67 8 h 30 min 0 s 25 NOV 88 16 h 30 min 0 s
1 row selected
SQL> --
SQL> -- The next example changes the digit separator to a period and
SQL> -- the radix point to a comma:
SQL> --
SQL> ALTER TABLE SALARY_HISTORY -
cont> ALTER SALARY_AMOUNT EDIT STRING ’ZZZ,ZZZ.ZZ’;
SQL> --
SQL> SET RADIX POINT ’,’
SQL> SET DIGIT SEPARATOR ’.’
SQL> SELECT SALARY_AMOUNT FROM SALARY_HISTORY;
SALARY_AMOUNT

26.291,00
51.712,00
26.291,00
50.000,00

.

.

.
SQL> --
SQL> -- This example shows how you can use the SET LANGUAGE
SQL> -- statement to change the output of dates to a particular
SQL> -- language. This example shows the default English first,
SQL> -- followed by French.
SQL> --

8–184 SQL Statements

SET Statement

SQL> -- Note that the time format is still based on
SQL> -- the SET DATE FORMAT TIME statement
SQL> -- previously executed in this example.
SQL> --
SQL> SELECT SALARY_START FROM SALARY_HISTORY;
SALARY_START
5 JUL 80 0 h 0 min 0 s
14 JAN 83 0 h 0 min 0 s
2 MAR 81 0 h 0 min 0 s
21 SEP 81 0 h 0 min 0 s
3 NOV 81 0 h 0 min 0 s
1 JUL 82 0 h 0 min 0 s
27 JAN 81 0 h 0 min 0 s
1 JUL 75 0 h 0 min 0 s
29 DEC 78 0 h 0 min 0 s
2 FEB 80 0 h 0 min 0 s
8 APR 79 0 h 0 min 0 s
19 AUG 77 0 h 0 min 0 s

.

.

.
SQL> --
SQL> SET LANGUAGE FRENCH
SQL> SELECT SALARY_START FROM SALARY_HISTORY;
SALARY_START
5 jul 80 0 h 0 min 0 s
14 jan 83 0 h 0 min 0 s
2 mar 81 0 h 0 min 0 s
21 sep 81 0 h 0 min 0 s
3 nov 81 0 h 0 min 0 s
1 jul 82 0 h 0 min 0 s
27 jan 81 0 h 0 min 0 s
1 jul 75 0 h 0 min 0 s
29 déc 78 0 h 0 min 0 s
2 fév 80 0 h 0 min 0 s
8 avr 79 0 h 0 min 0 s
19 aoû 77 0 h 0 min 0 s

.

.

.
SQL> --

Example 4: Using the SET statement to receive messages about syntax that
contains extensions to the ANSI/ISO SQL or MIA standards

This example shows the output when flagging is turned on, first for SQL92_
ENTRY and then for MIA.

SQL Statements 8–185

SET Statement

SQL> -- Flagging is off by default. When you enter a statement that
SQL> -- uses the data type VARCHAR, SQL does not issue a message.
SQL> --
SQL> SHOW FLAGGER MODE;
The flagger mode is OFF
SQL> CREATE TABLE TEST1 (TEXT_COL VARCHAR (100));
SQL> --
SQL> -- When you set the flagger to SQL92_ENTRY, SQL generates an
SQL> -- error message because VARCHAR is an extension to the standard.
SQL> --
SQL> SET FLAGGER SQL92_ENTRY ON
SQL> CREATE TABLE TEST2 (TEXT_COL VARCHAR (100));
%SQL-I-NONSTADTP, Nonstandard data type
SQL> --
SQL> -- With the flagger set to SQL92_ENTRY, SQL does not generate an
SQL> -- error message for the data type CHAR because it is an ANSI/ISO
SQL> -- standard data type.
SQL> --
SQL> CREATE TABLE TEST3 (TEXT_COL CHAR);
SQL> --
SQL> -- However, when you set the flagger to MIA, SQL generates two
SQL> -- error messages because data definition is not part of the MIA
SQL> -- standard. The first error message is caused by the CREATE
SQL> -- keyword; the second is caused by trying to create a table.
SQL> --
SQL> -- (Note that the SET FLAGGER statement itself is nonstandard.)
SQL> --
SQL> SET FLAGGER MIA ON
%SQL-I-NONSTASYN, Nonstandard syntax
SQL> CREATE TABLE TEST3 (TEXT_COL CHAR);
%SQL-I-NONSTASYN, Nonstandard syntax
%SQL-I-NONSTASYN, Nonstandard syntax
SQL>

Example 5: Using the SET statement to check for obsolete syntax

This example shows the output from an obsolete SQL statement when the user
specifies WARNING DEPRECATE, and the output from the same statement
when the user specifies WARNING NODEPRECATE.

8–186 SQL Statements

SET Statement

SQL> --
SQL> -- By default, SQL sends warning messages when you use obsolete syntax.
SQL> --
SQL> DECLARE SCHEMA FILENAME personnel;
%SQL-I-DEPR_FEATURE, Deprecated Feature: SCHEMA (meaning ALIAS)
SQL> DISCONNECT ALL;
SQL> --
SQL> -- When you specify SET WARNING NODEPRECATE, SQL does not display warning
SQL> -- messages.
SQL> --
SQL> SET WARNING NODEPRECATE;
SQL> DECLARE SCHEMA FILENAME personnel;
SQL> DISCONNECT ALL;

Example 6: Setting page length

The following example uses the SET PAGE LENGTH command to change the
pagination length of HELP.

SQL> set page length 40;
SQL> show display
Output of the query header is enabled
Output of the row counter is enabled
Output using edit strings is enabled
Page length is set to 40 lines
Line length is set to 80 bytes
Display NULL values using "NULL"

Example 7: Saving the output from a script

The following example shows the use of SET LOGFILE to save the output from
a script without echoing the results.

1. The script being executed.

set verify;
start transaction read only;
set logfile (noecho) ’saved_date.log’;
select rdb$flags from rdb$database;
set nologfile;
show alias;
rollback;

2. The output as seen during the Interactive SQL session.

SQL> start transaction read only;
SQL>
SQL> set logfile (noecho) ’saved_date.log’;
SQL>
SQL> show alias;
Default alias:

Oracle Rdb database in file SQL$DATABASE
SQL> rollback;

SQL Statements 8–187

SET Statement

3. The output saved in the log file.

SQL>
SQL> select rdb$flags from rdb$database;

RDB$FLAGS
0

1 row selected
SQL>
SQL> set nologfile;

8–188 SQL Statements

SET ALIAS Statement

SET ALIAS Statement

Specifies the default alias for an SQL user session in dynamically prepared and
executed or interactive SQL until another SET ALIAS statement is issued. If
you do not specify an alias, the default is RDB$DBHANDLE.

Environment

You can use the SET ALIAS statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

SET ALIAS <alias-string-literal>
<alias-parameter>
<alias-parameter-marker>

Arguments

alias-parameter
Specifies a host language variable in precompiled SQL or a formal parameter
in an SQL module language procedure that specifies the default alias.

alias-parameter-marker
Specifies a parameter marker (?) in a dynamic SQL statement. The alias
parameter marker refers to a parameter that specifies the default alias.

alias-string-literal
Specifies a character string literal that specifies the default alias. The alias
string literal must be enclosed in single quotation marks.

SQL Statements 8–189

SET ALIAS Statement

Usage Notes

• SQL interprets a two-level name in the following way:

1. SQL checks the name to the left of the period (.) to determine if it is an
alias. If it is, SQL interprets the name as:

alias-name.table-name

2. If there is no alias for this name, then SQL interprets the two-level
name as:

schema-name.table-name

Examples

Example 1: Setting a default alias to avoid qualifying object names

SQL> ATTACH ’ALIAS CORP FILENAME corporate_data’;
SQL> SET CATALOG ’ADMINISTRATION’;
SQL> SET SCHEMA ’PERSONNEL’;
SQL> SELECT LAST_NAME FROM EMPLOYEES;
%SQL-F-NODEFDB, There is no default database
SQL> --
SQL> -- You must qualify the table name because you attached with an alias.
SQL> --
SQL> SELECT LAST_NAME FROM CORP.EMPLOYEES;
LAST_NAME
Ames
Andriola
Babbin
.
.
.

100 rows selected
SQL> SET ALIAS ’CORP’;
SQL> --
SQL> -- Now you do not need to qualify the table name EMPLOYEES.
SQL> --
SQL> SELECT LAST_NAME FROM EMPLOYEES;
LAST_NAME
Ames
Andriola
Babbin
.
.
.

100 rows selected

8–190 SQL Statements

SET ALIAS Statement

Example 2: Changing the default alias

Use the SHOW DATABASE statement to see the database settings.

SQL> ATTACH ’FILENAME personnel’;
SQL> ATTACH ’ALIAS corp FILENAME corporate_data’;
SQL> --
SQL> -- The default alias, RDB$DBHANDLE, refers to PERSONNEL
SQL> -- to simplify references to CORPORATE_DATA make this
SQL> -- database the default alias
SQL> --
SQL> SET ALIAS ’CORP’;

.

.

.

SQL Statements 8–191

SET QUERY Statement

SET QUERY Statement

The SET QUERY statement is used to control query execution within a SQL
session.

Environment

You can use the SET QUERY statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Note that some options for the SET QUERY command may only be used in
interactive SQL.

Format

set-query =
SET QUERY CONFIRM

NOCONFIRM
LIMIT ROWS <rows_value>

TIME <time_value>
CPU TIME <time_value> SECONDS

MINUTES
NOLIMIT ROWS

TIME
CPU TIME

EXECUTION LIMIT CPU TIME <time_value>
ELAPSED SECONDS

MINUTES
EXECUTION NOLIMIT CPU TIME

ELAPSED

8–192 SQL Statements

SET QUERY Statement

Arguments

CONFIRM

Lets you preview the cost of a query, in terms of I/O, before any rows are
actually returned. For example:

SQL> SELECT * FROM EMPLOYEES;
Estimate of query cost: 52 I/O s, rows to deliver: 100
Do you wish to cancel this query (No)? YES
%SQL-F-QUERYCAN, Query cancelled at user s request

Some queries can result in Oracle Rdb performing a large number of I/O
operations, retrieving a large number of rows, or both. The SET QUERY
CONFIRM statement causes SQL to display estimated query costs. If the cost
appears excessive, you can cancel the query by answering No; to continue,
answer Yes.

The SET QUERY CONFIRM statement is only available for interactive SQL.

EXECUTION LIMIT
This option imposes elapsed and CPU time limits on executing queries. This
command affects all subsequent queries executed within the Rdb server
process. You must be attached to a database to execute this statement. This
statement affects all attaches for the current process, not just the current
connection.

• CPU TIME time_value [SECONDS | MINUTES]

• ELAPSED TIME time_value [SECONDS | MINUTES]

You can restrict the amount of elapsed time or CPU time used to execute a
query. If the query is not complete before the elapsed or CPU time limit is
reached, an error message is returned.

The default is unlimited time for the query execution. If you omit the
SECONDS and MINUTES keyword then SECONDS is the default. Dynamic
SQL options are inherited from the compilation qualifier for the module.

Note

Specifying a query time limit can cause application failure in certain
circumstances. For instance, an application that runs successfully
during off-peak hours may fail when run during peak hours due to the
load on the database.

SQL Statements 8–193

SET QUERY Statement

Use a positive integer for the number of seconds or minutes; negative integers
are invalid and zero means no limits. If an established limit is exceeded, the
query is canceled and an error message is displayed. When you set a CPU
time limit, elapsed time limit and a row limit (using SET QUERY LIMIT),
whichever value is reached first stops the query.

Database administraors and application developers can use this feature to
prevent users from overloading the system by executing long running, and
probably unproductive queries. The database administrator can manage
system performance and reduce unnecessary resource usage by setting option
limits.

EXECUTION NOLIMIT
This option removes a limit imposed by the SET QUERY EXECUTION LIMIT
command.

Use one of the following options.

• ELAPSED TIME

• CPU TIME

EXECUTION NOLIMIT is equivalent to assigning a limit of zero to any of the
options using SET QUERY EXECUTION LIMIT.

LIMIT
Sets limits to restrict the output generated by a query.

The mechanism used to set these limits is called the query governor. The
following gives you three ways to set limits using the query governor:

• ROWS rows_value

You can restrict output by limiting the number of rows a query can return.
The optimizer counts each row returned by the query and stops execution
when the row limit is reached.

The default is an unlimited number of row fetches. Dynamic SQL defaults
are inherited from the compilation qualifier for the module.

• TIME time_value [SECONDS | MINUTES]

You can restrict the amount of time used to optimize a query for execution.
If the query is not optimized and prepared for execution before the total
elapsed time limit is reached, an error message is returned.

8–194 SQL Statements

SET QUERY Statement

The default is unlimited time for the query compilation. If you omit the
SECONDS and MINUTES keyword then SECONDS is the default.

Note

Specifying a query time limit can cause application failure in certain
circumstances. For instance, an application that runs successfully
during off-peak hours may fail when run during peak hours due to the
load on the database.

• CPU TIME time_value [SECONDS | MINUTES]

You can restrict the amount of CPU time used to optimize a query for
execution. If the query is not optimized and prepared for execution before
the CPU time limit is reached, an error message is returned.

The default is unlimited CPU time for the query compilation. If you
omit SECONDS and MINUTES keyword then SECONDS is the default.
Dynamic SQL options are inherited from the compilation qualifier for the
module.

Use a positive integer for the number of rows and the number of seconds;
negative integers are invalid and zero means no limits. If an established limit
is exceeded, the query is canceled and an error message is displayed. When
you set both a time limit and the row limit, whichever value is reached first
stops the output.

Application developers can use this feature to prevent users from overloading
the system. The database administrator can manage system performance and
reduce unnecessary resource usage by setting option limits.

NOCONFIRM
Disables the query confirm dialog that was previously enabled using SET
QUERY CONFIRM. The SET QUERY NOCONFIRM statement is only
available for interactive SQL.

NOLIMIT
This option removes a limit imposed by the SET QUERY LIMIT command.

Use one of the following options.

• ROWS

• TIME

• CPU TIME

SQL Statements 8–195

SET QUERY Statement

NOLIMIT is equivalent to assigning a limit of zero to any of the options using
SET QUERY LIMIT.

rows_value
This argument represents the number of rows specified for the SET QUERY
argument. It can be a numeric literal, a parameter name (for interactive SQL),
or a parameter-marker (for dynamic SQL).

time_value
This argument represents the number of seconds or minutes specified for the
SET QUERY statement. It can be a numeric literal, a parameter name (for
interactive SQL), or a parameter-market (for dynamic SQL).

Examples

Example 1: Shows the syntax for establishing a row limit within an interactive
SQL session.

SQL> set query limit rows 10000;
SQL> show query limit;
Query limit Time is OFF
Query limit Row count is 10000 rows
Query limit CPU time is OFF
Execution limit CPU time is OFF
Execution limit Elapsed time is OFF
Execution limit Row count is OFF
SQL> set query nolimit rows;
SQL> show query limit;
Query limit Time is OFF
Query limit Row count is OFF
Query limit CPU time is OFF
Execution limit CPU time is OFF
Execution limit Elapsed time is OFF
Execution limit Row count is OFF

Example 2: Uses SET QUERY to establish a two second elapsed time limit for
a query, and shows the error message that is displayed.

SQL> set query execution limit elapsed time 2 seconds;
SQL> delete from EMPLOYEES;
%RDB-E-EXQUOTA, Oracle Rdb runtime quota exceeded
-RDMS-E-MAXTIMLIM, query governor maximum timeout has been reached
SQL> set query execution nolimit elapsed time;

8–196 SQL Statements

SET ALL CONSTRAINTS Statement

SET ALL CONSTRAINTS Statement

Controls checking for constraints that are evaluated at commit time. (This
statement has no effect on constraints that are evaluated at verb time. For
verb-time evaluation information, see the SET TRANSACTION Statement.)
The SET ALL CONSTRAINTS statement is used to evaluate deferrable
constraints at intervals before the transaction is committed.

Environment

You can use the SET ALL CONSTRAINTS statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

SET ALL CONSTRAINTS IMMEDIATE
DEFAULT
DEFERRED
ON
OFF

Arguments

DEFAULT
The default constraint mode setting for a session is DEFERRED unless you
have used one of the following to specify otherwise:

• SET DEFAULT CONSTRAINT MODE IMMEDIATE statement

• SQLOPTIONS=(CONSTRAINTS=IMMEDIATE) qualifier on the SQL
precompiler command line

• CONSTRAINTS=IMMEDIATE qualifier on the SQL module language
command line

SQL Statements 8–197

SET ALL CONSTRAINTS Statement

DEFERRED
OFF
This option causes constraint evaluation to be deferred until commit time,
when the transaction completes. OFF is synonymous with DEFERRED.

IMMEDIATE
ON
This option causes constraint evaluation to be executed immediately, when the
statement completes. ON is synonymous with IMMEDIATE.

When you issue a SET ALL CONSTRAINTS IMMEDIATE statement, SQL:

• Evaluates all previously deferred constraints (those that would otherwise
be evaluated at a COMMIT statement)

• Sets a mode in which SQL evaluates any constraints selected for deferred
evaluation by the execution of an SQL statement at the end of that SQL
statement (instead of waiting for a COMMIT statement)

Once the transaction completes, the constraint mode is set back to the default
constraint mode for subsequent statements.

Usage Notes

• If a transaction was declared but is not active when the SET ALL
CONSTRAINTS statement is executed, SQL starts the declared
transaction.

• See the description of the SQLOPTIONS=(CONSTRAINTS=ON | OFF)
qualifiers for the SQL precompiler command line in Chapter 4 and the
CONSTRAINTS qualifier for the SQL module language command line in
Chapter 3.

• If you require verb-time constraint evaluation, you must use the
EVALUATING clause on the SQL SET TRANSACTION statement. The
SET ALL CONSTRAINTS statement only affects when deferrable (commit
time) constraints get evaluated. For information about the VERB TIME
clause, see the SET TRANSACTION Statement.

• This statement does not affect NOT DEFERRABLE constraints.

• See the Oracle Rdb Guide to SQL Programming for information on
guidelines for controlling constraint evaluation time.

8–198 SQL Statements

SET ALL CONSTRAINTS Statement

• The SET ALL CONSTRAINTS ON statement is equivalent to SET ALL
CONSTRAINTS IMMEDIATE, and SET ALL CONSTRAINTS OFF is
equivalent to SET ALL CONSTRAINTS DEFERRED. The ON and OFF
keywords comply with the ANSI/ISO 1989 SQL standard; IMMEDIATE
and DEFERRED comply with later ANSI/ISO SQL standards.

Example

Example 1: Using the SET ALL CONSTRAINTS statement in interactive SQL

SQL> att ’file mf_personnel_sql’;
SQL> set all constraints immediate;
SQL> show constraint;

Statement constraint evaluation default is DEFERRED (off)
Statement constraint evaluation is IMMEDIATE (on)

SQL> /*
***> Show the constraints
***> */
SQL> show tables (constraints) job_history;
Information for table JOB_HISTORY

Table constraints for JOB_HISTORY:
JOB_HISTORY_FOREIGN1
Foreign Key constraint
Column constraint for JOB_HISTORY.EMPLOYEE_ID
Evaluated on COMMIT
Source:
JOB_HISTORY.EMPLOYEE_ID REFERENCES EMPLOYEES (EMPLOYEE_ID)

JOB_HISTORY_FOREIGN2
Foreign Key constraint
Column constraint for JOB_HISTORY.JOB_CODE
Evaluated on COMMIT
Source:
JOB_HISTORY.JOB_CODE REFERENCES JOBS (JOB_CODE)

JOB_HISTORY_FOREIGN3
Foreign Key constraint
Column constraint for JOB_HISTORY.DEPARTMENT_CODE
Evaluated on COMMIT
Source:
JOB_HISTORY.DEPARTMENT_CODE REFERENCES DEPARTMENTS (DEPARTMENT_CODE)

Constraints referencing table JOB_HISTORY:
No constraints found

SQL> set all constraints deferred;
SQL> show constraint;
Statement constraint evaluation default is DEFERRED (off)
Statement constraint evaluation is DEFERRED (off)
SQL>

SQL Statements 8–199

SET ANSI Statement

SET ANSI Statement

Specifies whether or not SQL behavior in certain instances complies with the
ANSI/ISO SQL standard. The current default behavior in these instances is
noncompliant.

Note

SQL provides the following new statements to replace the SET ANSI
statement:

• SET DEFAULT DATE FORMAT replaces SET ANSI DATE; see the
SET DEFAULT DATE FORMAT Statement.

• SET KEYWORD RULES replaces SET ANSI IDENTIFIERS; see
the SET KEYWORD RULES Statement.

• SET QUOTING RULES replaces SET ANSI QUOTING; see the
SET QUOTING RULES Statement.

• SET VIEW UPDATE RULES is new; see the SET VIEW UPDATE
RULES Statement.

In addition, SQL provides the SET DIALECT statement to let you
specify, with one statement, settings for all of these statements. See
the SET DIALECT Statement for more information.

SQL does not return a deprecated feature message if you use the SET
ANSI statement.

Environment

You can use the SET ANSI statement only in interactive SQL.

Format

SET ANSI DATE ON
IDENTIFIERS OFF
QUOTING

8–200 SQL Statements

SET ANSI Statement

Arguments

DATE ON
DATE OFF
Specifies the default interpretation for columns with the DATE data type, and
the data type of the CURRENT_TIMESTAMP function.

The DATE and CURRENT_TIMESTAMP data types, can be either VMS ADT
or ANSI. By default, both data types are interpreted as DATE VMS. The VMS
format contains YEAR TO SECOND fields, just as a TIMESTAMP does.

You can change DATE and CURRENT_TIMESTAMP to ANSI format with the
SET DEFAULT DATE FORMAT statement, the precompiler DEFAULT DATE
FORMAT clause in a DECLARE MODULE statement embedded in a program,
or the module language DEFAULT DATE FORMAT clause in a module file.
The ANSI format DATE contains only the YEAR TO DAY fields.

You must use the SET DEFAULT DATE FORMAT statement before creating
domains or tables. You cannot use this statement to modify the data type once
you have created a column or table.

IDENTIFIERS ON
IDENTIFIERS OFF
Specifies whether or not SQL checks statements that use reserved words
as identifiers. If you specify SET ANSI IDENTIFIERS ON, SQL checks
statements for reserved words from the ANSI/ISO standard. You must enclose
reserved words in double quotation marks to supply them as identifiers in SQL
statements. If you do not, SQL issues an informational message after such
statements when you enable reserved-word checking. For a list of the reserved
words deprecated as identifiers, see Appendix F.4.

When you specify SET ANSI IDENTIFIERS OFF, SQL does not check
identifiers. By default, SQL does not check identifiers.

QUOTING ON
QUOTING OFF
Allows you to use double quotation marks to delimit the alias and catalog
name pair in subsequent statements. By default, SQL syntax allows only
single quotation marks. To comply with ANSI/ISO SQL standard naming
conventions, ANSI QUOTING must be on. You must set ANSI QUOTING on
to use multischema database naming.

SQL Statements 8–201

SET ANSI Statement

Example

Example 1: Setting CURRENT_TIMESTAMP to ANSI format

In the following example, SQL issues an error message because CURRENT_
TIMESTAMP is an ADT data type by default, and TIMESTAMP is an
ANSI data type. The SET ANSI DATE ON statement changes the default
CURRENT_TIMESTAMP to ANSI format.

SQL> begin
cont> declare :logging_date timestamp;
cont> set :logging_date = current_timestamp;
cont> trace :logging_date;
cont> end;
%SQL-F-UNSDATASS, Unsupported date/time assignment from <Source> to LOGGING_DATE
SQL> SET ANSI DATE ON;
SQL> begin
cont> declare :logging_date timestamp;
cont> set :logging_date = current_timestamp;
cont> trace :logging_date;
cont> end;

Example 2: Using the SET ANSI IDENTIFIERS statement to check for
reserved words

This example shows the output from an SQL statement that creates a domain
and specifies the ANSI89 reserved word CONTINUE as the user-supplied
name for that domain. The SET ANSI IDENTIFIERS ON statement requires
that you use uppercase characters for the name and enclose it in double
quotation marks.

SQL> set ansi identifiers on;
SQL> create domain continue char(5);
%SQL-F-RES_WORD_AS_IDE, Keyword CONTINUE used as an identifier
SQL> create domain "CONTINUE" char(5);
SQL>

8–202 SQL Statements

SET AUTOMATIC TRANSLATION Statement

SET AUTOMATIC TRANSLATION Statement

Enables or disables automatic translation to and from the display character
set.

Environment

You can use the SET AUTOMATIC TRANSLATION statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

SET AUTOMATIC TRANSLATION
runtime-options

NOAUTOMATIC TRANSLATION
NO AUTOMATIC

runtime-options

’string-literal’
parameter
parameter-marker

Arguments

’string-literal’
parameter
parameter-marker
Specifies the value of runtime-options, which must be one of the following:

• ON

• OFF

ON enables automatic character set translation and OFF disables it. If no
runtime-options are specified, then the default behavior is to enable automatic
translation.

SQL Statements 8–203

SET AUTOMATIC TRANSLATION Statement

Usage Notes

• Enables the automatic translation of character data between client
applications and the Oracle Rdb server. This means that column data
is translated to the display character set during retrieval, and database
object names in queries are converted to the identifier character set during
query processing. See SET DISPLAY CHARACTER SET Statement for
more information.

• SET AUTOMATIC TRANSLATION will affect all databases in the current
environment. If no databases are attached then this setting will be applied
as databases are attached.

• The SET NO AUTOMATIC TRANSLATION and SET NOAUTOMATIC
TRANSLATION statements may only be used in Interactive SQL. They are
equivalent to SET AUTOMATIC TRANSLATION OFF.

• If AUTOMATIC TRANSLATION is enabled then translation is attempted
between different versions of the table row. For instance, after an ALTER
TABLE command where a new character set is specified for existing data.
This is demonstrated in the following example.

SQL> create table SAMPLE (description char(20));
SQL> insert into SAMPLE (description) values (’Sample text’);
1 row inserted
SQL> select description from SAMPLE;
DESCRIPTION
Sample text
1 row selected
SQL> alter table SAMPLE modify (description char(20) character set utf8);
SQL> select description from SAMPLE;
%RDB-E-CONVERT_ERROR, invalid or unsupported data conversion
-RDMS-E-CSETBADASSIGN, incompatible character sets prohibit the requested
assignment
SQL> set automatic translation;
SQL> select description from SAMPLE;
DESCRIPTION
Sample text
1 row selected
SQL>

Note that once the restructuring from an old version is created in
the current session, it is not undone by disabling AUTOMATIC
TRANSLATION.

8–204 SQL Statements

SET AUTOMATIC TRANSLATION Statement

Examples

Example 1: Using SET AUTOMATIC TRANSLATION command from a SQL
Module Language procedure

procedure SET_AUTO_TRANS (sqlcode);
SET AUTOMATIC TRANSLATION ON;

Or if a parameter is passed:

procedure SET_AUTO_TRANS
(sqlcode,
:on_off char(3)
);
SET AUTOMATIC TRANSLATION :on_off;

Example 2: Using SET AUTOMATIC TRANSLATION at runtime

SQL> declare :auto_trans char(10);
SQL> accept :auto_trans;
Enter value for AUTO_TRANS: off
SQL> set automatic translation :auto_trans;
SQL> show automatic translation;
Automatic translation: OFF
SQL>

SQL Statements 8–205

SET CATALOG Statement

SET CATALOG Statement

Specifies the default catalog name for an SQL user session in dynamically
prepared and executed or interactive SQL until another SET CATALOG
statement is issued.

Within one multischema database, tables in different catalogs can be used in a
single SQL statement; tables in catalogs in different databases cannot. If you
omit the catalog name when you specify an object in a multischema database,
SQL uses the default catalog name.

Environment

You can use the SET CATALOG statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

SET CATALOG <catalog-string-literal>
<catalog-parameter>
<catalog-parameter-marker>

catalog-string-literal =

’ catalog-expression ’

catalog-expression =

<name-of-catalog>

" <alias>.<name-of-catalog> "

8–206 SQL Statements

SET CATALOG Statement

Arguments

catalog-expression
Specifies the name of the default catalog for a multischema database. If you
omit the catalog name when you specify an object in a multischema database,
SQL uses the default catalog name. If you do not specify a default catalog
name, the default is RDB$CATALOG.

If you qualify the catalog name with an alias, the alias and catalog name pair
must be in uppercase characters and you must enclose the alias and catalog
name pair within double quotation marks.

See Section 2.2.3 for more information on catalogs.

catalog-parameter
Specifies a host language variable in precompiled SQL or a formal parameter
in an SQL module language procedure that specifies the default catalog. The
catalog parameter must contain a catalog expression.

catalog-parameter-marker
Specifies a parameter marker (?) in a dynamic SQL statement. The catalog
parameter marker refers to a parameter that specifies the default catalog. The
catalog parameter marker must specify a parameter that contains a catalog
expression.

catalog-string-literal
Specifies a character string literal that specifies the default catalog. The
catalog string literal must contain a catalog expression enclosed in single
quotation marks.

Usage Notes

• SQL does not issue an error message when you use SET CATALOG to set
default to a catalog that does not exist. However, when you refer to that
catalog by specifying an unqualified name, SQL issues the error message
shown in the following example:

SQL Statements 8–207

SET CATALOG Statement

SQL> ATTACH ’ALIAS CORP FILENAME corporate_data’;
SQL> SHOW CATALOGS
Catalogs in database CORP

"CORP.ADMINISTRATION"
"CORP.RDB$CATALOG"

SQL> SET CATALOG ’"CORP.NONEXISTENT"’;
SQL> SET SCHEMA ’PERSONNEL’;
SQL> CREATE TABLE NEWTABLE (COL1 REAL);
%SQL-F-CATNOTDEF, Catalog NONEXISTENT is not defined

• Remember that the double-quoted leftmost pair (the delimited identifier)
in a multischema object name requires uppercase characters. For other
multischema naming rules, see Section 2.2.11. You will receive the
following error message if you specify a delimited identifier in lowercase
characters:

SQL> SET SCHEMA ’"corp.administration".accounting’;
SQL> CREATE TABLE NEWTABLE (COL1 REAL);
%SQL-F-NODEFDB, There is no default database
SQL> SET SCHEMA ’"CORP.ADMINISTRATION".accounting’;
SQL> CREATE TABLE NEWTABLE (COL1 REAL);
SQL>

Examples

Example 1: Setting schema and catalog defaults for the default database

In this example, the user attaches to the multischema corporate_data database,
uses SET SCHEMA and SET CATALOG statements to change the defaults to
catalog ADMINISTRATION and schema ACCOUNTING of the corporate_data
database, and creates the table BUDGET in the schema ACCOUNTING.

SQL> ATTACH ’FILENAME corporate_data’;
SQL> SHOW CATALOGS;
Catalogs in database with filename corporate_data

ADMINISTRATION
RDB$CATALOG

8–208 SQL Statements

SET CATALOG Statement

SQL> SHOW SCHEMAS;
Schemas in database with filename corporate_data

ADMINISTRATION.ACCOUNTING
ADMINISTRATION.PERSONNEL
ADMINISTRATION.RECRUITING
RDB$SCHEMA

SQL> SET CATALOG ’ADMINISTRATION’;
SQL> SET SCHEMA ’ACCOUNTING’;
SQL> CREATE TABLE BUDGET (COL1 REAL);
SQL> SHOW TABLES;

BUDGET
DAILY_HOURS
DEPARTMENTS
.
.
.

SQL> --
SQL> -- To see the qualified table names, set default
SQL> -- to another schema and catalog.
SQL> --
SQL> SET CATALOG ’RDB$CATALOG’;
SQL> SET SCHEMA ’RDB$SCHEMA’;
SQL> SHOW TABLES
User tables in database with filename corporate_data

ADMINISTRATION.ACCOUNTING.BUDGET
ADMINISTRATION.ACCOUNTING.DAILY_HOURS
ADMINISTRATION.ACCOUNTING.DEPARTMENTS
.
.
.

Example 2: Setting a default catalog for a database with an alias

In this example, the user attaches to the multischema corporate_data database
using the alias CORP. Setting the default catalog allows you to shorten the
table name because you can qualify it with just the schema.

SQL> ATTACH ’ALIAS CORP FILENAME corporate_data’;
SQL> CREATE TABLE ACCOUNTING.PROJECT_7 (STATUS REAL);
%SQL-F-DBHANDUNK, ACCOUNTING is not the alias of a known database
SQL> --
SQL> -- You cannot qualify the table name without the alias,
SQL> -- so SQL assumes ACCOUNTING is the alias, not the schema.
SQL> -- Unless you want to qualify the table name with
SQL> -- both alias and catalog names, you must set the
SQL> -- default catalog to ADMINISTRATION, which
SQL> -- contains ACCOUNTING. You must enable ANSI/ISO quoting to do this.
SQL> --

SQL Statements 8–209

SET CATALOG Statement

SQL> SET QUOTING RULES ’SQL92’;
SQL> SET CATALOG ’"CORP.ADMINISTRATION"’;
SQL> CREATE TABLE ACCOUNTING.PROJECT_7 (STATUS REAL);
SQL> SHOW TABLES;
User tables in database with filename corporate_data

ACCOUNTING.BUDGET
.
.
.
ACCOUNTING.PROJECT_7
ACCOUNTING.WORK_STATUS

.

.

.

8–210 SQL Statements

SET CHARACTER LENGTH Statement

SET CHARACTER LENGTH Statement

Specifies whether the length of character string parameters, columns, domains,
and offsets are interpreted as characters or octets. (An octet is a group of 8
bits.)

Environment

You can use the SET CHARACTER LENGTH statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

SET CHARACTER LENGTH runtime-options

runtime-options

’string-literal’
parameter
parameter-marker

Arguments

’string-literal’
parameter
parameter-marker
Specifies the value of runtime-options, which must be one of the following:

• OCTETS

• CHARACTERS

CHARACTERS specifies the length of character string parameters, columns,
domains, and offsets, which are interpreted as characters.

OCTETS specifies the length of character string parameters, columns, domains,
and offsets, which are interpreted as octets.

SQL Statements 8–211

SET CHARACTER LENGTH Statement

The default is octets.

Usage Notes

• If the SET DIALECT statement is processed after the SET CHARACTER
LENGTH statement, it can override the setting of the SET CHARACTER
LENGTH statement.

• If the CHARACTER LENGTH is set to OCTETS and you use a multi-
octet character set, you must specify an appropriate size for parameters,
columns, and domains.

• Use the SHOW CONNECTIONS CURRENT statement to see the current
setting of character length for the session.

Examples

Example 1: Setting the character length to octets

SQL> set character length ’octets’;
SQL> show connection current;
Connection: RDB$DEFAULT_CONNECTION
Default alias is RDB$DBHANDLE
Default catalog name is RDB$CATALOG
Default schema name is SMITH
Dialect: SQLV40
Default character unit: OCTETS
Keyword Rules: SQLV40
View Rules: SQLV40
Default DATE type: DATE VMS
Quoting Rules: SQLV40
Optimization Level: DEFAULT
Hold Cursors default: WITH HOLD PRESERVE NONE
Quiet commit mode: OFF
Compound transactions mode: EXTERNAL
Default character set is DEC_MCS
National character set is DEC_MCS
Identifier character set is DEC_MCS
Literal character set is DEC_MCS
Display character set is UNSPECIFIED

8–212 SQL Statements

SET CHARACTER LENGTH Statement

Alias RDB$DBHANDLE:
Identifier character set is DEC_MCS
Default character set is DEC_MCS
National character set is DEC_MCS

SQL> /*
***> Create two domains: one uses LATIN9, a single-octet character
***> set, and one uses KANJI a fixed multi-octet character set.
***> */
SQL> create domain LATIN9_DOM char(8) character set ISOLATIN9;
SQL> create domain KANJI_DOM char(5) character set KANJI;
%SQL-F-CHRUNIBAD, Number of octets is not an integral number of characters
SQL> /*
***> Because KANJI is a fixed multi-octet character set, using two
***> octets for each character, you must specify the size as a
***> multiple of two.
***> */
SQL> create domain KANJI_DOM char(8) character set KANJI;
SQL> show domains;
User domains in database with filename MIA_CHAR_SET
KANJI_DOM CHAR(8)

KANJI 4 Characters, 8 Octets
LATIN9_DOM CHAR(8)

ISOLATIN9 8 Characters, 8 Octets
SQL>

Example 2: Setting the character length to characters

SQL> set character length ’characters’;
SQL> show connection current;
Connection: RDB$DEFAULT_CONNECTION
Default alias is RDB$DBHANDLE
Default catalog name is RDB$CATALOG
Default schema name is SMITH
Dialect: SQLV40
Default character unit: CHARACTERS
Keyword Rules: SQLV40
View Rules: SQLV40
Default DATE type: DATE VMS
Quoting Rules: SQLV40
Optimization Level: DEFAULT
Hold Cursors default: WITH HOLD PRESERVE NONE
Quiet commit mode: OFF
Compound transactions mode: EXTERNAL
Default character set is DEC_MCS
National character set is DEC_MCS
Identifier character set is DEC_MCS
Literal character set is DEC_MCS
Display character set is UNSPECIFIED

SQL Statements 8–213

SET CHARACTER LENGTH Statement

Alias RDB$DBHANDLE:
Identifier character set is DEC_MCS
Default character set is DEC_MCS
National character set is DEC_MCS

SQL> /*
***> Create two domains: one uses LATIN9, a single-octet character
***> set, and one uses KANJI a fixed multi-octet character set.
***> */
SQL> create domain LATIN9_DOM char(8) character set ISOLATIN9;
SQL> create domain KANJI_DOM char(5) character set KANJI;
SQL> show domains;
User domains in database with filename MIA_CHAR_SET
KANJI_DOM CHAR(5)

KANJI 5 Characters, 10 Octets
LATIN9_DOM CHAR(8)

ISOLATIN9 8 Characters, 8 Octets
SQL>

8–214 SQL Statements

SET COMPOUND TRANSACTIONS Statement

SET COMPOUND TRANSACTIONS Statement

Allows you to control the SQL behavior for starting a default transaction for a
compound statement.

By default, if there is no current transaction, SQL starts a transaction before
executing a compound statement or stored procedure. However, this might
conflict with the actions within the procedure, or it might start a transaction
for no reason if the procedure body does not perform any database access.
This default is retained for backward compatibility for applications which may
expect a transaction to be started for the procedure.

Environment

You can use the SET COMPOUND TRANSACTIONS statement:

• In interactive SQL

• In dynamic SQL as a statement to be dynamically executed

Format

SET COMPOUND TRANSACTION int-ext-val

Argument

int-ext-value
A string literal or host variable containing the keyword ’INTERNAL’ or
’EXTERNAL’. These keywords can be in any case (uppercase, lowercase, or
mixed case). If the value is set to EXTERNAL, then SQL starts a transaction
before executing the procedure. If the value is set to INTERNAL, then SQL
allows the procedure to start a transaction as required by the procedure
execution.

Usage Notes

• In the SQL module language or precompiler header, the COMPOUND
TRANSACTIONS option can be used to disable or enable starting a
transaction for procedures. The keyword INTERNAL or EXTERNAL must
be used to enable or disable this feature.

SQL Statements 8–215

SET COMPOUND TRANSACTIONS Statement

MODULE TXN_CONTROL
LANGUAGE BASIC
PARAMETER COLONS
COMPOUND TRANSACTIONS INTERNAL

PROCEDURE S_TXN (SQLCODE);
BEGIN
SET TRANSACTION READ WRITE;
END;

PROCEDURE C_TXN (SQLCODE);
BEGIN
COMMIT;
END;

Example

Example 1: Enabling and Disabling Transaction Starting

In interactive or dynamic SQL, the following SET command can be used to
disable or enable transactions starting by the SQL interface. The parameter to
the SET command is a string literal or host variable containing the keyword
’INTERNAL’ or ’EXTERNAL’.

SQL> SET COMPOUND TRANSACTIONS ’internal’;
SQL> CALL START_TXN_AND_COMMIT ();
SQL> SET COMPOUND TRANSACTIONS ’external’;
SQL> CALL UPDATE_EMPLOYEES (...);

8–216 SQL Statements

SET CONNECT Statement

SET CONNECT Statement

Selects the named connection from the available connections, suspends any
current connection and saves its context, and uses the named connection in
subsequent procedures in the application after the SET CONNECT statement
executes.

For information about creating and naming connections, see the CONNECT
Statement.

Environment

You can use the SET CONNECT statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

SET CONNECT <connection-name>
DEFAULT

Arguments

connection-name
Specifies a name for the association between the group of databases being
attached (the environment) and the database and request handles that
reference them (the connection).

You can specify the connection name as the following:

• String literal enclosed within single quotation marks

• Parameter (in module language)

• Variable (in precompiled SQL)

DEFAULT
Specifies one or more databases to be attached as a unit.

SQL Statements 8–217

SET CONNECT Statement

Use the DEFAULT keyword to specify the default connection. The default
connection is all the databases that were attached interactively, or all those
made known to the module at compile time through DECLARE ALIAS
statements.

Usage Note

If you specify a connection name unknown to SQL, SQL returns an error
message and does not change the connection state.

Examples

Example 1: Creating a default connection and two other connections

The following log file from an interactive SQL connection shows three
databases attachments: personnel_northwest, personnel_northeast, and
personnel_southeast. (By not specifying an alias for personnel_northwest,
the default alias is assigned.) Several connections are established, including
EAST_COAST, which includes both personnel_northeast and personnel_
southeast.

Use the SHOW DATABASE statement to see the database settings.

SQL> --
SQL> -- Attach to the personnel_northwest and personnel_northeast databases.
SQL> -- personnel_northwest has the default alias, so personnel_northeast
SQL> -- requires an alias.
SQL> -- All the attached databases comprise the default connection.
SQL> --
SQL> ATTACH ’FILENAME personnel_northwest’;
SQL> ATTACH ’ALIAS NORTHEAST FILENAME personnel_northeast’;
SQL> --
SQL> -- Add the personnel_southeast database.
SQL> --
SQL> ATTACH ’ALIAS SOUTHEAST FILENAME personnel_southeast’;
SQL> --
SQL> -- Connect to personnel_southeast. CONNECT does an
SQL> -- implicit SET CONNECT to the newly created connection.
SQL> --
SQL> CONNECT TO ’ALIAS SOUTHEAST FILENAME personnel_southeast’
cont> AS ’SOUTHEAST_CONNECTION’;
SQL> --
SQL> -- Connect to both personnel_southeast and personnel_northeast as
SQL> -- EAST_COAST connection. SQL replaces the current connection to
SQL> -- the personnel_southeast database with the EAST_COAST connection
SQL> -- when you issue the CONNECT statement. You now have two different
SQL> -- connections that include personnel_southeast.
SQL> --
SQL> CONNECT TO ’ALIAS NORTHEAST FILENAME personnel_northeast,

8–218 SQL Statements

SET CONNECT Statement

cont> ALIAS SOUTHEAST FILENAME personnel_southeast’
cont> AS ’EAST_COAST’;
SQL> --
SQL> -- The DEFAULT connection still includes all the attached databases.
SQL> --
SQL> SET CONNECT DEFAULT;
SQL> --
SQL> -- DISCONNECT releases the connection name EAST_COAST, but
SQL> -- does not detach from the EAST_COAST databases because
SQL> -- they are also part of the default connection.
SQL> --
SQL> DISCONNECT ’EAST_COAST’;
SQL> --
SQL> SET CONNECT ’EAST_COAST’;
%SQL-F-NOSUCHCON, There is not an active connection by that name
SQL> --
SQL> -- If you disconnect from the default connection, and have no other
SQL> -- current connections, you are no longer attached to any databases.
SQL> --
SQL> DISCONNECT DEFAULT;
SQL> SHOW DATABASES;
%SQL-F-ERRATTDEF, Could not use database file specified by SQL$DATABASE
-RDB-E-BAD_DB_FORMAT, SQL$DATABASE does not reference a database known to Rdb
-RMS-E-FNF, file not found

Example 2: Disconnecting a connection and starting a new connection with the
same database

In this example, there are two connections: the default connection and a
current connection, CA. Both connections use the personnel_ca database. Use
the SHOW DATABASE statement to see the database settings.

SQL Statements 8–219

SET CONNECT Statement

SQL> --
SQL> -- Establish a default connection by attaching to the personnel_ca
SQL> -- database.
SQL> --
SQL> ATTACH ’FILENAME personnel_ca’;
SQL> SHOW CONNECTIONS;
-> RDB$DEFAULT_CONNECTION
SQL> --
SQL> -- Start a new connection called CA.
SQL> --
SQL> CONNECT TO ’FILENAME personnel_ca’
cont> AS ’CA’;
SQL> SHOW CONNECTIONS;

RDB$DEFAULT_CONNECTION
-> CA
SQL> --
SQL> -- The DISCONNECT CURRENT statement releases the connection name CA,
SQL> -- although the database personnel_ca still belongs to the default
SQL> -- connection.
SQL> --
SQL> DISCONNECT CURRENT;
SQL> SHOW CONNECTIONS;
-> RDB$DEFAULT_CONNECTION
SQL> --
SQL> -- Even though the database personnel_ca is still attached, CA
SQL> -- is no longer an active connection.
SQL> --
SQL> SET CONNECT ’CA’;
%SQL-F-NOSUCHCON, There is not an active connection by that name
SQL> --
SQL> -- The original ATTACH statement comprises the default connection.
SQL> -- The DISCONNECT DEFAULT statement detaches the default connection.
SQL> --
SQL> DISCONNECT DEFAULT;
SQL> SHOW DATABASES;
%SQL-F-ERRATTDEF, Could not use database file specified by SQL$DATABASE
-RDB-E-BAD_DB_FORMAT, SQL$DATABASE does not reference a database known to Rdb
-RMS-E-FNF, file not found

8–220 SQL Statements

SET Control Statement

SET Control Statement

Assigns a value to a target parameter or a variable name.

Environment

You can use the SET assignment control statement in a compound statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

set-assignment-statement =

SET <parameter> = value-expr
<variable-name> NULL

Arguments

parameter
variable-name
Specifies the target where SQL stores a value expression or the NULL value.

value-expr
NULL
Assigns the value of a value expression or the NULL value to a target
parameter or variable name.

Usage Notes

• The data type of a value expression must be compatible with the data type
of its target parameter or variable name.

• If you attempt to assign a value into a target specification that is shorter
than the value, Oracle Rdb truncates the value and SQLSTATE returns a
warning.

SQL Statements 8–221

SET Control Statement

• When assigning a value to a parameter without an indicator parameter
to identify NULL values and if the value expression is NULL, Oracle Rdb
returns an error.

Examples

Example 1: Assigning a value expression to a target parameter

BEGIN
SET :y = (SELECT COUNT (*) FROM employees);
END;

Example 2: Assigning the NULL value expression to a target parameter

BEGIN
SET :z = NULL;
END;

8–222 SQL Statements

SET DEFAULT CHARACTER SET Statement

SET DEFAULT CHARACTER SET Statement

Specifies the default character set for the SQL session.

Environment

You can use the SET DEFAULT CHARACTER SET statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

SET DEFAULT CHARACTER SET runtime-options

runtime-options

’string-literal’
parameter
parameter-marker

Arguments

’string-literal’
parameter
parameter-marker
Specifies the default character set for your session. The value of runtime-
options must be a valid character set. For a list of allowable character set
names and option values, see the Section 2.1.

Usage Notes

• The SET DEFAULT CHARACTER SET statement sets the default
character set for the session.

SQL Statements 8–223

SET DEFAULT CHARACTER SET Statement

• If you have set the dialect to SQL99, SQL92 or MIA, and if you do not
specify the database default character set when you create the database,
SQL assigns the session’s default character set to the database default
character set. Otherwise, SQL uses DEC_MCS as the default character set
for the database.

• The session default character set may be set by issuing the DEFAULT
CHARACTER SET clause within the SQL module header or by using the
SET DEFAULT CHARACTER SET statement. See Section 2.1 for a list of
default character sets.

• If the session default character set was not specified within a module
header or by using the SET DEFAULT CHARACTER SET statement and
the logical RDB$CHARACTER_SET is defined, then SQL converts the
value assigned to the logical name to a character set name. This character
set is used as the module default character set. See Table E-2 for more
information regarding conversion of logical names to character set names.

The RDB$CHARACTER_SET logical name is deprecated and will not be
supported in a future release.

• Use the SHOW CHARACTER SET statement to display the current session
character sets.

For information on setting the character sets for modules in SQL module
language and precompiled SQL, see Section 3.2 and the DECLARE MODULE
Statement.

Example

Example 1: Setting the default character set of an interactive session

SQL> show character sets;
Default character set is DEC_MCS
National character set is DEC_MCS
Identifier character set is SHIFT_JIS
Literal character set is SHIFT_JIS
Display character set is SHIFT_JIS
SQL> set default character set ’DEC_KANJI’;
SQL> show character sets;
Default character set is DEC_KANJI
National character set is DEC_MCS
Identifier character set is SHIFT_JIS
Literal character set is SHIFT_JIS
Display character set is SHIFT_JIS

8–224 SQL Statements

SET DEFAULT CONSTRAINT MODE Statement

SET DEFAULT CONSTRAINT MODE Statement

Sets the default constraint setting for statements.

Environment

You can use the SET DEFAULT CONSTRAINT MODE statement:

• In interactive SQL

• In Dynamic SQL as a statement to be dynamically executed

Format
SET DEFAULT CONSTRAINT MODE IMMEDIATE

DEFAULT
DEFERRED
ON
OFF
runtime-options

runtime-options

’string-literal’
parameter
parameter-marker

Arguments

DEFAULT
OFF
Requests that during the next transaction, all constraints defined as
DEFERRABLE INITIALLY DEFERRED be evaluated as originally specified in
the constraint definition. OFF is synonymous with DEFAULT.

DEFERRED
Synonymous with DEFAULT. However, in a future release of Oracle Rdb this
keyword will change meaning.

IMMEDIATE
ON
This option requests that during this transaction, all constraints defined as
DEFERRABLE INITIALLY DEFERRED be evaluated as though defined

SQL Statements 8–225

SET DEFAULT CONSTRAINT MODE Statement

as DEFERRABLE INITIALLY IMMEDIATE. ON is synonymous with
IMMEDIATE.

’string-literal’
parameter
parameter-marker
Specifies the default character set for your session. The value of runtime-
options must be a valid character set. For a list of allowable character set
names and option values, see Section 2.1.

Usage Notes

• Within a transaction the constraint mode can be set temporarily using the
SET ALL CONSTRAINTS statement. When a COMMIT or ROLLBACK
is executed, the mode will revert to that established by SET DEFAULT
CONSTRAINT MODE.

• This statement does not affect the execution of NOT DEFERRABLE
constraints.

Examples

Example 1: Using the SET statement to change the current setting for
constraint evaluation

The following example shows how to use the SET statement to change the
constraint evaluation mode for the current transaction. You can display both
the current setting and the default setting.

8–226 SQL Statements

SET DEFAULT CONSTRAINT MODE Statement

SQL> attach ’filename mf_personnel_sql’;
SQL> /*
***> Show settings before starting, set the default mode,
***> then show the settings again.
***> */
SQL> show constraint mode;

Statement constraint evaluation default is DEFERRED (off)
SQL> set default constraint mode immediate;
SQL> show constraint mode;

Statement constraint evaluation default is IMMEDIATE (on)
SQL> start transaction;
SQL> set all constraints deferred;
SQL> show constraint mode;

Statement constraint evaluation default is IMMEDIATE (on)
Statement constraint evaluation is DEFERRED (off)

SQL> commit;
SQL> show constraint mode;

Statement constraint evaluation default is IMMEDIATE (on)
SQL>

Example 2: Using runtime options

If using runtime-options the passed character value must be one of the
keywords: ON, OFF, IMMEDIATE, DEFERRED, or DEFAULT. The following
example shows how this can be done in Interactive SQL.

SQL> show constraint mode
Statement constraint evaluation default is DEFERRED (off)

SQL> declare :c_mode char(10) = ’IMMEDIATE’;
SQL> set default constraint mode :c_mode;
SQL> show constraint mode

Statement constraint evaluation default is IMMEDIATE (on)
SQL>

SQL Statements 8–227

SET DEFAULT DATE FORMAT Statement

SET DEFAULT DATE FORMAT Statement

Specifies whether columns with the DATE data type or with the built-in
function CURRENT_TIMESTAMP are interpreted as VMS or SQL99 format.

Environment

You can use the SET DEFAULT DATE FORMAT statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

SET DEFAULT DATE FORMAT runtime-options

runtime-options

’string-literal’
parameter
parameter-marker

Arguments

’string-literal’
parameter
parameter-marker
Specifies the value of runtime-options, which must be one of the following:

• SQL99

• SQL92

• VMS

8–228 SQL Statements

SET DEFAULT DATE FORMAT Statement

SQL99 or SQL92
Specifies that the DATE data type and the CURRENT_TIMESTAMP built-in
function are interpreted as SQL standard. The SQL standard format DATE
contains only the YEAR TO DAY fields, and CURRENT_TIMESTAMP returns
a TIMESTAMP data type.

VMS
Specifies that the DATE data type and the CURRENT_TIMESTAMP built-
in function are interpreted as VMS format. The VMS format DATE and
CURRENT_TIMESTAMP contain YEAR TO SECOND fields.

Usage Notes

• If the SET DIALECT statement is processed after the SET DEFAULT
DATE FORMAT statement, it can override the setting of the SET
DEFAULT DATE FORMAT statement.

• You cannot use the SET DEFAULT DATE FORMAT statement to modify
the data type of a domain or column after it is created. Use the SET
DEFAULT DATE FORMAT statement before you create a domain or
column.

• Specifying the SET DEFAULT DATE FORMAT statement changes the
default date format for the current connection only. Use the SHOW
CONNECTIONS statement to display the characteristics of a connection.

Example

Example 1: Changing the DATE format to SQL99

In the following example, SQL issues an error because, by default, the DATE
data type is in OpenVMS DATE format. That is, it contains the fields YEAR
through SECOND. The SET DEFAULT DATE FORMAT statement changes the
default to ANSI/ISO format so that the CURRENT_DATE and DATE types are
compatible.

SQL Statements 8–229

SET DEFAULT DATE FORMAT Statement

SQL> set default date format ’VMS’;
SQL> --
SQL> create domain LOGGING_DATE
cont> DATE
cont> default CURRENT_DATE;
%SQL-F-DEFVALINC, You specified a default value for LOGGING_DATE
which is inconsistent with its data type
SQL> --
SQL> set default date format ’SQL99’;
SQL> --
SQL> create domain LOGGING_DATE
cont> DATE
cont> default CURRENT_DATE;
SQL> show domain LOGGING_DATE;
LOGGING_DATE DATE ANSI
Oracle Rdb default: CURRENT_DATE

8–230 SQL Statements

SET DIALECT Statement

SET DIALECT Statement

Specifies the settings of the current connection for the following characteristics:

• Whether the length of character string parameters, columns, and domains
are interpreted as characters or octets. This can also be specified by using
the SET CHARACTER LENGTH statement.

• Whether double quotation marks are interpreted as string literals
or delimited identifiers. This can also be specified by using the SET
QUOTING RULES statement.

• Whether or not identifiers can be keywords. This can also be specified by
using the SET KEYWORD RULES statement.

• Which views are read-only. This can also be specified by using the SET
VIEW UPDATE RULES statement.

• Whether columns with the DATE or CURRENT_TIMESTAMP data type
are interpreted as VMS or SQL99 format. This can also be specified by
using the SET DEFAULT DATE FORMAT statement.

• Whether character sets change. Character sets can be changed using the
SET DEFAULT CHARACTER SET, SET NATIONAL CHARACTER SET,
SET IDENTIFIER CHARACTER SET, and SET LITERAL CHARACTER
SET statements.

The SET DIALECT statement lets you specify several settings with one
command, instead of specifying each setting individually.

Table 8–5 shows the settings for each option.

SQL Statements 8–231

SET DIALECT Statement

Table 8–5 Dialect Settings

Characteristic SQL991 MIA SQLV40 ORACLE Dialects2

Character length Characters Characters Octets Characters

Quoting rules Delimited
identifier

Delimited
identifier

Literal Delimited identifier

Keywords allowed as
identifiers

No No Yes Yes

View update rules ANSI/ISO SQL
rules

ANSI/ISO SQL
rules

Oracle Rdb
rules

ANSI/ISO SQL rules

Default date format DATE ANSI DATE ANSI DATE VMS DATE VMS

Default character set Not changed KATAKANA Not changed Not changed

National character set Not changed KANJI Not changed Not changed

Identifier character set Not changed DEC_KANJI Not changed Not changed

Literal character set Not changed KATAKANA Not changed Not changed

Default evaluation for
constraints

Not Deferrable Deferrable Deferrable Not Deferrable

1Also applies to SQL92
2Applies to both ORACLE LEVEL1 and ORACLE LEVEL2

Oracle Corporation recommends that you set the dialect to SQL99 or SQL92,
unless you need to maintain compatibility with an earlier dialect.

Environment

You can use the SET DIALECT statement:

• In interactive SQL

• Embedded in host language programs to be precompiled to effect the
processing of dynamic SQL statements (use the DIALECT clause to effect
dialect changes in the precompiled source)

• As part of a procedure in an SQL module (but may not be in a compound
statement)

• In dynamic SQL as a statement to be dynamically executed

However, the ORACLE dialects can be used only in the interactive SQL and
dynamic SQL environments.

8–232 SQL Statements

SET DIALECT Statement

Format

SET DIALECT runtime-options

runtime-options

’string-literal’
parameter
parameter-marker

Arguments

ORACLE LEVEL1
Specifies the following behavior:

• The same dialect rules as SQL92 are in effect minus reserved word
checking and the DATE ANSI format.

• The ORACLE LEVEL1 dialect allows the use of aliases to reference (or
link) to tables in data manipulation statements like SELECT, DELETE,
INSERT, and UPDATE. For example:

SQL> ATTACH ’ALIAS pers_alias FILENAME mf_personnel’;
SQL> SET DIALECT ’ORACLE LEVEL1’;
SQL> SELECT * FROM employees@pers_alias
cont> WHERE employee_id = ’00164’;
EMPLOYEE_ID LAST_NAME FIRST_NAME MIDDLE_INITIAL
ADDRESS_DATA_1 ADDRESS_DATA_2 CITY

STATE POSTAL_CODE SEX BIRTHDAY STATUS_CODE
00164 Toliver Alvin A
146 Parnell Place Chocorua

NH 03817 M 28-Mar-1947 1

1 row selected

Alias references are only allowed on the table name and not on column
names. You cannot put a space between the table name, the at (@) sign,
and the alias name.

If you specify a schema name when referencing an Oracle Rdb database,
the schema name is ignored unless the multischema attribute is on.

• The following basic predicate for inequality comparisons is supported:

!=

The != basic predicate requires that the ORACLE LEVEL1 dialect be set to
avoid confusion with the interactive SQL comment character.

SQL Statements 8–233

SET DIALECT Statement

• When using dynamic SQL, the client application can specify a synonym for
the parameter marker (?). For example, :name, :1, :2, and so on.

• The string concatenation operator and the CONCAT function treat nulls as
zero-length strings.

• The default date format is DATE VMS which is capable of doing arithmetic
in the ORACLE LEVEL1 dialect only. Addition and subtraction can be
done with numeric data types that are implicitly cast to the INTERVAL
DAY data type. Fractions are rounded to the nearest whole integer.

• Zero length strings are null. When using an Oracle Database, a VARCHAR
of zero length is considered null. While the Oracle Rdb ORACLE LEVEL1
dialect does not remove zero length strings from the database, it does make
them difficult to create. The following rules are in effect:

– Empty literal strings (for example, ’’) are considered literal nulls.

– Any function that encounters a zero length string returns a null
in its place. This includes stored and external functions returning
a VARCHAR data type regardless of the dialect under which they
were compiled. It also includes the TRIM and SUBSTRING built-in
functions.

– Parameters with the VARCHAR data type and a length of zero are
treated as null.

The best way to avoid zero length strings from being seen by an Oracle
Database application is to only use views compiled under the ORACLE
dialects and to modify tables with VARCHAR columns to remove zero
length strings. The following example shows how to remove zero length
strings from a VARCHAR column in a table:

SQL> UPDATE tab1 SET col1 = NULL WHERE CHARACTER_LENGTH(col1) = 0;

If modifying the table is not possible or if a view compiled in another
dialect containing VARCHAR functions must be used, then create a new
view under the ORACLE dialect referring to that table or view to avoid
the zero length VARCHAR string. The following example shows how to
avoid selecting zero length strings from a VARCHAR column in a table or
non-Oracle dialect view:

SQL> SET DIALECT ’ORACLE LEVEL1’;
SQL> CREATE VIEW view1 (col1, col2)
cont> AS SELECT SUBSTRING(col1 FROM 1 FOR 2000), col2 FROM tab1;

8–234 SQL Statements

SET DIALECT Statement

The Oracle Rdb optimizer is more efficient if data is selected without the
use of functions. Therefore, the previous example is best used only if you
suspect zero length strings have been inserted into the table and it is
necessary to avoid them.

• The ROWNUM keyword is allowed in select expressions and limits the
number of rows returned in the query. The following example limits the
number of rows returned by the SELECT statement to 9 rows:

SQL> ATTACH ’FILENAME mf_personnel’;
SQL> SET DIALECT ’ORACLE LEVEL1’;
SQL> SELECT last_name FROM EMPLOYEES WHERE ROWNUM < 10;
LAST_NAME
Toliver
Smith
Dietrich
Kilpatrick
Nash
Gray
Wood
D’Amico
Peters

9 rows selected

Conditions testing for ROWNUM values greater than or equal to a positive
integer are always false and, therefore, return no rows. For example:

SQL> SELECT last_name FROM EMPLOYEES WHERE ROWNUM > 10;
0 rows selected
SQL> SELECT last_name FROM EMPLOYEES WHERE ROWNUM = 10;
0 rows selected

See the Usage Notes for additional restrictions that apply to the ROWNUM
keyword.

ORACLE LEVEL2
This includes all the behavior describe for ORACLE LEVEL1 plus the following
changes:

• The same dialect rules as SQL99 are in effect minus reserved word
checking and the DATE ANSI format.

• Concatenate (| |) and the CONCAT function allow for all data types, not
just character types (CHAR, and VARCHAR). The numeric, or date/time
values are converted to VARCHAR prior to the concatenation.

• Date subtraction results in a floating result. Partial days are now
represented by a fraction portion.

SQL Statements 8–235

SET DIALECT Statement

• This is not an exhaustive list. Refer to Oracle Rdb Release Notes for
additional semantic changes for dialect ORACLE LEVEL2.

’string-literal’
parameter
parameter-marker
Specifies the value of the runtime-options, which must be one of the following:

• SQL99

• SQL92

• SQL89

• MIA

• SQLV40

• ORACLE LEVEL1

• ORACLE LEVEL2

SQL89
MIA
Specifies the following behavior:

• The length of character string parameters, columns, and domains is
interpreted as characters, rather than octets.

• Double quotation marks are interpreted as delimited identifiers.

• Keywords cannot be used as identifiers unless they are enclosed within
double quotation marks.

• The ANSI/ISO SQL standard for updatable views is applied to all views
created during compilation. Views that do not comply with the ANSI/ISO
SQL standard for updatable views cannot be updated.

The ANSI/ISO SQL standard for updatable views requires the following
conditions to be met in the SELECT statement:

The DISTINCT keyword is not specified.

Only column names can appear in the select list. Each column name
can appear only once. Functions and expressions such as max(column_
name) or column_name +1 cannot appear in the select list.

The FROM clause refers to only one table. This table must be either a
base table, global temporary table, local temporary table, or a derived
table that can be updated.

8–236 SQL Statements

SET DIALECT Statement

The WHERE clause does not contain a subquery.

The GROUP BY clause is not specified.

The HAVING clause is not specified.

If you specify MIA, SQL sets the character sets as follows:

• Default character set: KATAKANA

• National character set: KANJI

• Identifier character set: DEC_KANJI

• Literal character set: KATAKANA

• The constraint evaluation time is DEFERRABLE INITIALLY DEFERRED.

SQL92
Specifies the following behavior:

• The length of character string parameters, columns, and domains is
interpreted as characters, rather than octets.

• Double quotation marks are interpreted as delimited identifiers.

• Keywords cannot be used as identifiers unless they are enclosed within
double quotation marks.

• The ANSI/ISO SQL standard for updatable views is applied to all views
created during compilation. Views that do not comply with the ANSI/ISO
SQL standard for updatable views cannot be updated.

The ANSI/ISO SQL standard for updatable views requires the following
conditions to be met in the SELECT statement:

The DISTINCT keyword is not specified.

Only column names can appear in the select list. Each column name
can appear only once. Functions and expressions such as max(column_
name) or column_name +1 cannot appear in the select list.

The FROM clause refers to only one table. This table must be either a
base table, global temporary table, local temporary table, or a derived
table that can be updated.

The WHERE clause does not contain a subquery.

The GROUP BY clause is not specified.

The HAVING clause is not specified.

SQL Statements 8–237

SET DIALECT Statement

• The DATE and CURRENT_TIMESTAMP data types are interpreted as
SQL format. The SQL (ANSI) format DATE contains only the YEAR TO
DAY fields.

• Conversions between character data types when storing data or retrieving
data raise exceptions or warnings in certain situations. For further
explanation of these situations, see Section 2.3.8.2.

• You can specify DECIMAL or NUMERIC for formal parameters in SQL
modules and declare host language parameters with packed decimal or
signed numeric storage format. SQL generates an error message if you
attempt to exceed the precision specified.

• The USER keyword specifies the current active user name for a request.

• A warning is generated when a NULL value is eliminated from a SET
function.

• The WITH CHECK OPTION clause on views returns a discrete error code
from an integrity constraint failure.

• An exception is generated with terminated C strings that are not NULL.

• The default on constraint evaluation time is set to NOT DEFERRABLE
INITIALLY IMMEDIATE.

SQL99
Specifies that the SQL language conforms to SQL:1999 SQL Database
Language Standard.

This includes all the behavior describe for SQL92 plus the following changes:

• The FOREIGN KEY constraint may list the column names in the
REFERENCES list in any order. In other dialects the column names
must be in the same order as the referenced PRIMARY KEY or UNIQUE
constraint.

• This is not an exhaustive list. Refer to the Oracle Rdb Release Notes for
additional semantic changes for dialect SQL99.

SQLV40
Specifies the following behavior:

• The length of character string parameters, columns, and domains is
interpreted as octets, rather than characters.

• Double quotation marks are interpreted as string literals.

• Keywords can be used as identifiers.

8–238 SQL Statements

SET DIALECT Statement

• The ANSI/ISO SQL standard for updatable views is not applied. Instead,
SQL considers views that meet the following conditions to be updatable:

The DISTINCT keyword is not specified.

The FROM clause refers to only one table. This table must be either a
base table, global temporary table, local temporary table, or a derived
table that can be updated.

The WHERE clause does not contain a subquery.

The GROUP BY clause is not specified.

The HAVING clause is not specified.

• The DATE and CURRENT_TIMESTAMP data types are interpreted as
VMS format. The VMS format DATE and CURRENT_TIMESTAMP
contain YEAR TO SECOND fields.

• The constraint evaluation time is DEFERRABLE INITIALLY DEFERRED.

The default is SQLV40.

See Table 8–5 for the setting values of the dialect options.

Usage Notes

• If the following statements are processed after the SET DIALECT
statement, they override the settings of the SET DIALECT statement:

– SET CHARACTER LENGTH

– SET QUOTING RULES

– SET KEYWORD RULES

– SET VIEW UPDATE RULES

– SET DEFAULT DATE FORMAT

– SET DEFAULT CHARACTER SET

– SET NATIONAL CHARACTER SET

– SET IDENTIFIER CHARACTER SET

– SET LITERAL CHARACTER SET

– SET NAMES

These statements change the settings of the current connection only.

SQL Statements 8–239

SET DIALECT Statement

• If you specify MIA and then change the dialect to another value, the MIA
character sets remain intact for the default, national, identifier, and literal
character sets. You must manually change the character set for each of
these in this situation. For more information on changing the session
character sets, see the SET DEFAULT CHARACTER SET Statement,
the SET IDENTIFIER CHARACTER SET Statement, the SET LITERAL
CHARACTER SET Statement, and the SET NATIONAL CHARACTER
SET Statement.

• Use the SHOW CONNECTIONS statement to display the characteristics of
a connection.

• If the source string is greater than the target string when converting
between character data types, the result is left-justified and truncated on
the right with no error reported for dialects MIA, SQL89, and SQLV40.

For all other dialects, an error is returned when storing data unless the
truncated characters are only space characters in which case no error is
returned. If you are retrieving data, a warning is returned if truncation
occurs. The warning is returned regardless of whether or not the truncated
characters are blank.

• If you set your dialect to SQL89, Oracle Rdb allows the translation of a
missing value (defined using the RDO interface) to process when inserting
or updating data in the database using the SQL interface. If a value is set
to the missing value using RDO, the resulting value of an insert or update
using SQL is NULL.

• Other restrictions that apply to the ROWNUM keyword are:

– Can be used only with the ORACLE dialects. All other dialects must
use the LIMIT TO clause.

– Can be used only in a comparison of select expression predicate.

– Can appear only in SELECT statements or select expressions.

– Cannot be used with a LIMIT TO clause.

– Cannot appear more than once in the predicate of a WHERE clause.

– Cannot be compared to a column.

– Cannot be used in a compound statement.

– Cannot appear on either side of an OR Boolean operator.

– Cannot be selected or used in a function call.

8–240 SQL Statements

SET DIALECT Statement

Examples

Example 1: Setting the characteristics to SQL92

SQL> ATTACH ’ALIAS MIA1 FILENAME MIA_CHAR_SET DISPLAY CHARACTER SET SHIFT_JIS’;
SQL> CONNECT TO ’ALIAS MIA1 FILENAME MIA_CHAR_SET’ AS ’TEST’;
SQL> SHOW CONNECTIONS TEST;
Connection: TEST
Default alias is RDB$DBHANDLE
Default catalog name is RDB$CATALOG
Default schema name is SMITH
Dialect: SQLV40
Default character unit: OCTETS
Keyword Rules: SQLV40
View Rules: SQLV40
Default DATE type: DATE VMS
Quoting Rules: SQLV40
Optimization Level: DEFAULT
Hold Cursors default: WITH HOLD PRESERVE NONE
Quiet commit mode: OFF
Compound transactions mode: EXTERNAL
Default character set is DEC_MCS
National character set is DEC_MCS
Identifier character set is SHIFT_JIS
Literal character set is SHIFT_JIS
Display character set is SHIFT_JIS

SQL Statements 8–241

SET DIALECT Statement

Alias MIA1:
Identifier character set is DEC_KANJI
Default character set is KATAKANA
National character set is KANJI

SQL> --
SQL> -- Change the environment from SQLV40 to MIA. Notice that the session
SQL> -- character sets change.
SQL> --
SQL> SET DIALECT ’MIA’;
SQL> SHOW CONNECTIONS TEST;
Connection: TEST
Default alias is RDB$DBHANDLE
Default catalog name is RDB$CATALOG
Default schema name is SMITH
Dialect: MIA
Default character unit: CHARACTERS
Keyword Rules: MIA
View Rules: ANSI/ISO
Default DATE type: DATE ANSI
Quoting Rules: ANSI/ISO
Optimization Level: DEFAULT
Hold Cursors default: WITH HOLD PRESERVE NONE
Quiet commit mode: OFF
Compound transactions mode: EXTERNAL
Default character set is KATAKANA
National character set is KANJI
Identifier character set is DEC_KANJI
Literal character set is KATAKANA
Display character set is SHIFT_JIS

8–242 SQL Statements

SET DIALECT Statement

Alias MIA1:
Identifier character set is DEC_KANJI
Default character set is KATAKANA
National character set is KANJI

SQL> --
SQL> -- Change the environment from MIA to SQL99. Notice that the
SQL> -- session characters DO NOT change from the MIA settings.
SQL> --
SQL> SET DIALECT ’SQL99’;
SQL> SHOW CONNECTIONS TEST;
Connection: TEST
Default alias is RDB$DBHANDLE
Default catalog name is RDB$CATALOG
Default schema name is SMITH
Dialect: SQL99
Default character unit: CHARACTERS
Keyword Rules: SQL99
View Rules: ANSI/ISO
Default DATE type: DATE ANSI
Quoting Rules: ANSI/ISO
Optimization Level: DEFAULT
Hold Cursors default: WITH HOLD PRESERVE NONE
Quiet commit mode: ON
Compound transactions mode: EXTERNAL
Default character set is KATAKANA
National character set is KANJI
Identifier character set is DEC_KANJI
Literal character set is KATAKANA
Display character set is SHIFT_JIS

Alias MIA1:
Identifier character set is DEC_KANJI
Default character set is KATAKANA
National character set is KANJI

SQL Statements 8–243

SET DIALECT Statement

Example 2: Saving and restoring dialect in interactive SQL

This example shows the use of declared variables in interactive SQL to save
(using GET ENVIRONMENT) and restore the dialect during execution of a
script that requires an alternate dialect. This example simply displays the
dialect using the SHOW CONNECTION statement.

SQL> set dialect ’sql99’;
SQL> -- save current dialect
SQL> declare :dialect char(40);
SQL> get environment (session) :dialect = DIALECT;
SQL> print :dialect;
DIALECT
SQL99
SQL> set dialect ’oracle level2’;
SQL> show connection rdb$default_connection;
Connection: RDB$DEFAULT_CONNECTION
Default alias is RDB$DBHANDLE
Default catalog name is RDB$CATALOG
Default schema name is SMITH
Dialect: SQL99 (ORACLE LEVEL2)
Default character unit: CHARACTERS
Keyword Rules: SQL99
View Rules: ANSI/ISO
Default DATE type: DATE VMS
Quoting Rules: ANSI/ISO
Optimization Level: DEFAULT
Hold Cursors default: WITH HOLD PRESERVE NONE
Quiet commit mode: ON
Compound transactions mode: EXTERNAL
Default character set is DEC_MCS
National character set is DEC_MCS
Identifier character set is DEC_MCS
Literal character set is DEC_MCS
Display character set is UNSPECIFIED
SQL>
SQL> -- restore previous dialect
SQL> set dialect :dialect;
SQL> show connection rdb$default_connection;
Connection: RDB$DEFAULT_CONNECTION
Default alias is RDB$DBHANDLE
Default catalog name is RDB$CATALOG
Default schema name is SMITH
Dialect: SQL99
Default character unit: CHARACTERS
Keyword Rules: SQL99
View Rules: ANSI/ISO
Default DATE type: DATE ANSI
Quoting Rules: ANSI/ISO
Optimization Level: DEFAULT
Hold Cursors default: WITH HOLD PRESERVE NONE

8–244 SQL Statements

SET DIALECT Statement

Quiet commit mode: ON
Compound transactions mode: EXTERNAL
Default character set is DEC_MCS
National character set is DEC_MCS
Identifier character set is DEC_MCS
Literal character set is DEC_MCS
Display character set is UNSPECIFIED
SQL>

SQL Statements 8–245

SET DISPLAY Statement

SET DISPLAY Statement

Controls the output of header information. Use the SHOW DISPLAY statement
to view the current settings.

Environment

You can use the SET DISPLAY statement in interactive SQL only.

Format

SET DISPLAY COMMENT
NO EDIT STRING

QUERY HEADER
ROW COUNTER

DEFAULT NULL STRING
NULL STRING <literal>

<host-variable>
,

Arguments

COMMENT
NOCOMMENT
Disables or enables the display of comment text by other SHOW commands
(for example, SHOW TABLE).

DEFAULT NULL STRING
Reverts to using the text ’NULL’.

EDIT STRING
NO EDIT STRING
Enables the usage of column edit strings to format values for the SELECT
statement. Use NO EDIT STRING to disable the use of the column edit
strings.

NULL STRING
Changes the way NULL values are displayed by interactive SQL.

8–246 SQL Statements

SET DISPLAY Statement

QUERY HEADER
NO QUERY HEADER
Enables the printed header generated by the SELECT, CALL, FETCH, and
PRINT statements. Use NO QUERY HEADER to disable this header.

ROW COUNTER
NO ROW COUNTER
Enables the total count reported by SELECT, DELETE, INSERT, and UPDATE
statements. Use NO ROW COUNTER to disable the trailing count message.

Usage Notes

• The width of the displayed column is calculated using the maximum of the
length of the column name, the length of the QUERY HEADER, the length
of the NULL string and the size of the formatted data.

• The statement SET DISPLAY DEFAULT NULL STRING is equivalent to
SET DISPLAY NULL STRING ’NULL’.

• SET DISPLAY NULL STRING accepts a string literal, or a declared local
variable.

• The GET ENVIRONMENT statement includes the NULL_STRING
keyword that can be used to save the currently defined text.

• The defaults are to use edit strings, display the query header, and report
a row count message. More than one option can be specified, separated by
commas. However, you cannot specify both the option and its negated form
in one statement, as demonstrated in the following example:

SQL> SET DISPLAY QUERY HEADER, NO QUERY HEADER
%SQL-F-MULTSPECATR, Multiple specified attribute.
"QUERY HEADER" was specified more than once

• The following SET statements, provided for compatibility with SQL*Plus,
are equivalent to SET DISPLAY clauses:

SET HEADING ON is a synonym for the SQL SET DISPLAY QUERY
HEADER statement. SQL output statements such as SELECT, PRINT,
and FETCH will display the name of the column, variable or its query
header.

SET HEADING OFF is a synonym for the SQL SET NO DISPLAY
QUERY HEADER statement. SQL output statements such as SELECT,
PRINT, and FETCH will no longer display the query header.

SQL Statements 8–247

SET DISPLAY Statement

SET FEEDBACK ON is a synonym for the SQL SET DISPLAY NO
ROW COUNTER statement. SQL data manipulation statements such
as SELECT, DELETE, UPDATE, and INSERT will display the number
of affected rows.

SET FEEDBACK OFF is a synonym for the SQL SET DISPLAY ROW
COUNTER statement. SQL data manipulation statements no longer
display the count of affected rows.

SET NULL is a synonym for SET DISPLAY NULL STRING ’ ’, and
SET NULL ’literal’ is equivalent to SET DISPLAY NULL ’literal’.

Example

Example 1: Using the SET DISPLAY Statement

The following example shows the effect of the SET DISPLAY statement. It
uses the SHOW DISPLAY command to report the current settings.

SQL> ATTACH ’FILENAME mf_personnel’;
SQL>
SQL> CREATE DOMAIN money INTEGER(2) EDIT STRING ’$$$,$$9.99’;
SQL> CREATE TABLE temp_emp (id INTEGER, sal money);
SQL>
SQL> SELECT * FROM work_status;
STATUS_CODE STATUS_NAME STATUS_TYPE
0 INACTIVE RECORD EXPIRED
1 ACTIVE FULL TIME
2 ACTIVE PART TIME
3 rows selected
SQL>
SQL> SET DISPLAY NO ROW COUNTER;
SQL> SHOW DISPLAY
Output of the query header is enabled
Output of the row counter is disabled
Output using edit strings is enabled
Page length is set to 24 lines
Line length is set to 132 bytes
Display NULL values using "NULL"
SQL> SELECT * FROM work_status;
STATUS_CODE STATUS_NAME STATUS_TYPE
0 INACTIVE RECORD EXPIRED
1 ACTIVE FULL TIME
2 ACTIVE PART TIME
SQL> INSERT INTO temp_emp (id) VALUES (0);
SQL> INSERT INTO temp_emp (id, sal)
cont> SELECT employee_id, MAX(salary_amount)
cont> FROM salary_history GROUP BY employee_id;
SQL> UPDATE temp_emp SET id = NULL WHERE id <= 0;

8–248 SQL Statements

SET DISPLAY Statement

SQL> DELETE FROM temp_emp WHERE id IS NULL;
SQL>
SQL> SET DISPLAY ROW COUNTER;
SQL> SHOW DISPLAY
Output of the query header is enabled
Output of the row counter is enabled
Output using edit strings is enabled
Page length is set to 24 lines
Line length is set to 132 bytes
Display NULL values using "NULL"
SQL>
SQL> SELECT * FROM work_status;
STATUS_CODE STATUS_NAME STATUS_TYPE
0 INACTIVE RECORD EXPIRED
1 ACTIVE FULL TIME
2 ACTIVE PART TIME
3 rows selected
SQL>
SQL> SET DISPLAY NO QUERY HEADER;
SQL> SHOW DISPLAY
Output of the query header is disabled
Output of the row counter is enabled
Output using edit strings is enabled
Page length is set to 24 lines
Line length is set to 132 bytes
Display NULL values using "NULL"
SQL>
SQL> DECLARE :res INTEGER;
SQL>
SQL> -- This omits the query header for the SELECT statement
SQL> SELECT * FROM work_status;
0 INACTIVE RECORD EXPIRED
1 ACTIVE FULL TIME
2 ACTIVE PART TIME
3 rows selected
SQL>
SQL> -- This omits the query header for the PRINT statement
SQL> PRINT :res;

0
SQL> PRINT ’This is a print line’;
This is a print line
SQL>
SQL> CREATE MODULE call_sample
cont> LANGUAGE SQL
cont> PROCEDURE add_one (IN :a INTEGER, OUT :b INTEGER);
cont> SET :b = :a + 1;
cont> END MODULE;
SQL> -- This omits the query header for the OUT/INOUT parameters for CALL
SQL> CALL add_one (100, :res);

101
SQL>
SQL> DECLARE c CURSOR FOR SELECT * FROM work_status;

SQL Statements 8–249

SET DISPLAY Statement

SQL> OPEN c;
SQL> -- This omits the query headers for the variables fetched
SQL> FETCH c;
0 INACTIVE RECORD EXPIRED
SQL> SET DISPLAY QUERY HEADER;
SQL> SHOW DISPLAY
Output of the query header is enabled
Output of the row counter is enabled
Output using edit strings is enabled
Page length is set to 24 lines
Line length is set to 132 bytes
Display NULL values using "NULL"
SQL> -- This outputs the query headers for the variables fetched
SQL> FETCH c;
STATUS_CODE STATUS_NAME STATUS_TYPE
1 ACTIVE FULL TIME
SQL> CLOSE c;
SQL>
SQL> TRUNCATE TABLE temp_emp;
SQL> INSERT INTO temp_emp (id, sal)
cont> SELECT employee_id, AVG(salary_amount)
cont> FROM salary_history
cont> WHERE salary_end IS NULL
cont> GROUP BY employee_id;
100 rows inserted
SQL>
SQL> SELECT * FROM temp_emp ORDER BY id LIMIT TO 3 ROWS;

ID SAL
164 $51,712.00
165 $11,676.00
166 $18,497.00

3 rows selected
SQL>
SQL> SET DISPLAY NO EDIT STRING;
SQL> SHOW DISPLAY
Output of the query header is enabled
Output of the row counter is enabled
Output using edit strings is disabled
Page length is set to 24 lines
Line length is set to 132 bytes
Display NULL values using "NULL"
SQL>
SQL> SELECT * FROM temp_emp ORDER BY id LIMIT TO 3 ROWS;

164 51712.00
165 11676.00
166 18497.00

3 rows selected
SQL>
SQL> SET DISPLAY EDIT STRING;
SQL> SHOW DISPLAY
Output of the query header is enabled
Output of the row counter is enabled

8–250 SQL Statements

SET DISPLAY Statement

Output using edit strings is enabled
Page length is set to 24 lines
Line length is set to 132 bytes
Display NULL values using "NULL"
SQL>
SQL> SELECT * FROM temp_emp ORDER BY id LIMIT TO 3 ROWS;

ID SAL
164 $51,712.00
165 $11,676.00
166 $18,497.00

3 rows selected

Example 2: Replacing the NULL values with text to make the output easier to
read

SQL> select job_start, job_end,
cont> (select department_name
cont> from departments d
cont> where d.department_code = jh.department_code)
cont> from job_history jh
cont> where employee_id = ’00164’;
JOB_START JOB_END
21-Sep-1981 NULL Board Manufacturing North
5-Jul-1980 20-Sep-1981 Cabinet & Frame Manufacturing

2 rows selected
SQL> set display null string ’(still employeed)’
SQL> select job_start, job_end,
cont> (select department_name
cont> from departments d
cont> where d.department_code = jh.department_code)
cont> from job_history jh
cont> where employee_id = ’00164’;
JOB_START JOB_END
21-Sep-1981 (still employeed) Board Manufacturing North
5-Jul-1980 20-Sep-1981 Cabinet & Frame Manufacturing

2 rows selected

Example 3: Disabling the comment display to make the output of SHOW
easier to read

SQL> show domain id_dom
ID_DOM CHAR(5)
Comment: standard definition of employee id
SQL> set display no comment;
SQL> show domain id_dom
ID_DOM CHAR(5)
SQL>

SQL Statements 8–251

SET DISPLAY Statement

Example 4: Save the current NULL string using GET ENVIRONMENT and
restore after executing a query.

SQL> declare :ns varchar(100);
SQL> get environment (session) :ns = NULL_STRING;
SQL> set null;
SQL> select job_start, job_end,
cont> (select department_name
cont> from departments d
cont> where d.department_code = jh.department_code)
cont> from job_history jh
cont> where employee_id = ’00164’;
JOB_START JOB_END
21-Sep-1981 Board Manufacturing North
5-Jul-1980 20-Sep-1981 Cabinet & Frame Manufacturing

2 rows selected
SQL> set display null string :ns;
SQL> select job_start, job_end,
cont> (select department_name
cont> from departments d
cont> where d.department_code = jh.department_code)
cont> from job_history jh
cont> where employee_id = ’00164’;
JOB_START JOB_END
21-Sep-1981 NULL Board Manufacturing North
5-Jul-1980 20-Sep-1981 Cabinet & Frame Manufacturing

2 rows selected

8–252 SQL Statements

SET DISPLAY CHARACTER SET Statement

SET DISPLAY CHARACTER SET Statement

Specifies the display character set.

Environment

You can use the SET DISPLAY CHARACTER SET statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

SET DISPLAY CHARACTER SET runtime-options

runtime-options

’string-literal’
parameter
parameter-marker

Arguments

’string-literal’
parameter
parameter-marker
Specifies the display character set used for the automatic translation of text
values before the values are returned to the user application. See Table 2-1 for
a list of allowable character sets and option values.

Usage Notes

• The SET DISPLAY CHARACTER SET statement provides a mechanism
for specifying the default display character set to be used implicitly by
subsequent attach statements if automatic translation has not been
disabled. For example the following statements are equivalent:

SQL Statements 8–253

SET DISPLAY CHARACTER SET Statement

SQL> SET DISPLAY CHARACTER SET ‘SHIFT_JIS’;
SQL> ATTACH ‘FILENAME MF_PERSONNEL’;
SQL> --
SQL> -- is equivalent to:
SQL> --
SQL> ATTACH ‘FILENAME MF_PERSONNEL DISPLAY CHARACTER SET SHIFT_JIS’;

Both sets of statements will cause the Oracle Rdb server to automatically
translate any text information returned to SQL from that database attach
session to the SHIFT_JIS character set.

• The display character set is used in conjunction with AUTOMATIC
TRANSLATION. If automatic translation is enabled then Oracle Rdb
will attempt to translate character data to and from the specified display
character set during retrieval and query of the database. See the SET
AUTOMATIC TRANSLATION statement.

The most common use for this feature is for those client applications not
running on OpenVMS. For example, the stored data might be in DEC_
KANJI and display is required on a Windows client using the SHIFT_JIS
character set.

• SET DISPLAY CHARACTER SET changes the identifier and literal
character sets, in addition to the display character set. This allows, for
instance, applications to query the database passing in literals and table
names that are encoded in the SHIFT_JIS character set. Oracle Rdb will
translate these names to the appropriate character set based on the target
database attributes.

• Use the SHOW CHARACTER SETS statement to see the current display
character set in an interactive session.

SQL> set display character set ’SHIFT_JIS’;
SQL> show character sets;
Default character set is DEC_KANJI
National character set is DEC_MCS
Identifier character set is SHIFT_JIS
Literal character set is SHIFT_JIS
Display character set is SHIFT_JIS

• The default is the UNSPECIFIED character set which indicates to Oracle
Rdb that no translation will be attempted.

8–254 SQL Statements

SET DISPLAY CHARACTER SET Statement

Examples

Example 1: Setting the display character set of an interactive session

SQL> show character sets;
Default character set is DEC_MCS
National character set is DEC_MCS
Identifier character set is DEC_MCS
Literal character set is DEC_MCS
Display character set is UNSPECIFIED
SQL> set display character set ’SHIFT_JIS’;
SQL> show character sets;
Default character set is DEC_MCS
National character set is DEC_MCS
Identifier character set is SHIFT_JIS
Literal character set is SHIFT_JIS
Display character set is SHIFT_JIS

SQL Statements 8–255

SET FLAGS Statement

SET FLAGS Statement

Allows enabling and disabling of database system debug flags for the current
session.

The literal or host variable passed to this command can contain a list of
keywords, or negated keywords, separated by commas. Spaces are ignored.
The keywords may be abbreviated to an unambiguous length.

Note

Oracle Corporation reserves the right to add new keywords to the SET
FLAGS statement in any release or update to Oracle Rdb, which may
change this unambiguous length. Therefore, it is recommended that
the full keyword be used in applications.

Environment

You can use the SET FLAGS statement:

• In interactive SQL

• In dynamic SQL as a statement to be dynamically executed

Format

SET FLAGS <literal>
(ON ALIAS alias-name) <host-variable>

NOFLAGS

Arguments

FLAGS
Specifies whether or not a database system debug flag is set.

Table 8–6 shows the available keywords that can be specified. Unless otherwise
indicated in the table, the Debug Flags Equivalent sets the RDMS$DEBUG_
FLAGS logical name to the behavior listed under the keyword.

8–256 SQL Statements

SET FLAGS Statement

In addition, the keywords (and negated keywords) listed in the table can be
specified as the equivalence string for the RDMS$SET_FLAGS logical name.

Table 8–6 Debug Flag Keywords

Keyword
Debug Flags
Equivalent1 Comment

ALTERNATE_OUTLINE_
ID

None The optimizer discards literal values when
producing an outline identifer. See the Usage
Notes.

AUTO_INDEX Xq Allows CREATE TABLE and ALTER TABLE to
create indices for any PRIMARY KEY, FOREIGN
KEY or UNIQUE constraint added to the table.

AUTO_OVERRIDE None Allows a user with the DBADM (administrator)
privilege to insert or update a column defined as
AUTOMATIC.

BITMAPPED_SCAN None Enables use of in-memory compressed DBkey
bitmaps for index AND and OR operations in the
dynamic optimizer.

BLR B Displays the binary language (BLR) representa-
tion request for the query

CARDINALITY K Shows cardinality updates
CARTESIAN_LIMIT None Limits the number of small tables that are

allowed to be placed anywhere in the join order.
CHRONO_FLAG(n) Xc Forces timestamp-before-dump display. The

value of n can be 0, 1, or 2, or n can be omitted.
CHRONO_FLAG(0) and NOCHRONO_FLAG
are equivalent. If you specify CHRONO_FLAG
but omit n, the default is CHRONO_FLAG(1).
CHRONO_FLAG(1) enables an additional trace
message that includes the attach number and
the current time. CHRONO_FLAG(2) enables
an additional trace message that includes the
attach number and the current date and time. If
you supply a value for n that is greater than 2,
it is ignored, and a value of 1 is used.

1RDMS$DEBUG_FLAGS logical name

(continued on next page)

SQL Statements 8–257

SET FLAGS Statement

Table 8–6 (Cont.) Debug Flag Keywords

Keyword
Debug Flags
Equivalent1 Comment

CONTROL_BITS Bc Displays a decoding of the BLR$K_CONTROL_
BITS semantic flags when used with the BLR
keyword.

COSTING Oc Displays traces on optimizer costing.
COUNT_SCAN None Enables count scan optimization on sorted

ranked indexes, where the optimizer will use
cardinality information from the sorted ranked
index to determine the count of rows that satisfy
the query.

CURSOR_STATS Og Displays general cursor statistics for the
optimizer.

DATABASE_
PARAMETERS

P Displays the database parameter buffer during
ATTACH, CREATE DATABASE, ALTER
DATABASE, IMPORT DATABASE, and
DISCONNECT statements.

DDL_BLR D Displays the binary language (BLR) representa-
tion of expressions within data definitions, such
as the expression for a computed column within
a table definition.

DETAIL_LEVEL None A debug flag used with other debug flags
to enable additional detailed information
in the debug output. The DETAIL_LEVEL
keyword can be followed by a numeric value in
parentheses. For those debug flags that support
it, this indicates the degree of aditional detail to
be shown.

ESTIMATES O Displays the optimizer estimates.

1RDMS$DEBUG_FLAGS logical name

(continued on next page)

8–258 SQL Statements

SET FLAGS Statement

Table 8–6 (Cont.) Debug Flag Keywords

Keyword
Debug Flags
Equivalent1 Comment

EXECUTION E Displays an execution trace from the dynamic
optimizer. For a sequential retrieval from a table
that is strictly partitioned, this includes a count
and a list of the selected partitions each time the
query executes.
The EXECUTION keyword can be followed by a
numeric value in parentheses. This represents
the number of lines to display before stopping
the execution trace for the query execution.
There can be no spaces between the keyword
and the parameter. The default is 100.

IGNORE_OUTLINE None Ignores outlines defined in the database. The
IGNORE_OUTLINE keyword has the same
action as setting the RDMS$BIND_OUTLINE_
FLAGS logical name to 1.

INDEX_COLUMN_
GROUP

None Enables leading index columns as workload
column groups. This may increase solution
cardinality accuracy. See the Usage Notes for
details.

INDEX_DEFER_ROOT Xb When this flag is set and an index is created, the
index root node is created in the database only
when there is data in the table. If the table is
empty, creation of the index root node is deferred
until rows are inserted into the table.

INDEX_PARTITIONS Si Displays index partitioning information as part
of a dynamic execution trace.

INDEX_STATS Ai Enables debug flags output for the progress of an
ALTER, CREATE, or DROP INDEX statement.

INTERNALS I Enables debug flags output for internal queries
such as constraints and triggers. It can be used
in conjunction with other keywords such as
STRATEGY, BLR, and EXECUTION.

1RDMS$DEBUG_FLAGS logical name

(continued on next page)

SQL Statements 8–259

SET FLAGS Statement

Table 8–6 (Cont.) Debug Flag Keywords

Keyword
Debug Flags
Equivalent1 Comment

ITEM_LIST H Displays item list information passed in for the
database queries and as compile-time query
options

LAREA_READY Xr This flag can be used to investigate table and
index locking behavior. This flag is disabled by
default.

MAX_RECURSION None Sets the maximum number of recursions that
can be performed when executing a match
strategy. This prevents excessive recursion
in the processing of the match strategy. The
default value is 100. The equivalent logical
name is RDMS$BIND_MAX_RECURSION.

MAX_SOLUTION None Enables maximum search space for possible
retrieval solutions. If enabled, the optimizer
will try more solutions based on each leading
segment of the index, and thus may create
more solutions than before, but may find more
efficient solutions applying multiple segments in
index retrieval. The equivalent logical name is
RDMS$DISABLE_MAX_SOLUTION. Default is
enabled.

MAX_STABILITY None Enables maximum stability; the dynamic opti-
mizer is not allowed. The MAX_STABILITY key-
word has the same action as the RDMS$MAX_
STABILITY logical name.

MBLR M Displays the metadata binary language
representation request for the data definition
language statement

1RDMS$DEBUG_FLAGS logical name

(continued on next page)

8–260 SQL Statements

SET FLAGS Statement

Table 8–6 (Cont.) Debug Flag Keywords

Keyword
Debug Flags
Equivalent1 Comment

MODE(n) See Usage
Notes

Allows you to specify which query outline should
be used by specifying the mode value of that
query outline.
The value of n can be any positive or negative
integer, or n can be omitted. If you specify
MODE but omit n, the default is MODE(1). If
you specify MODE(0) or NOMODE, it disables
the display of the mode in the SHOW FLAGS
statement output. MODE(0) is the default for
Oracle Rdb generated outlines.

NONE2 Not Applicable Used to turn off all currently defined keywords.
Equivalent to SET NOFLAGS.

NOREWRITE None When no parameters are provided, all query
rewrite optimizations are disabled.

NOREWRITE
(CONTAINING)

None Specifying the CONTAINING keyword will
disable only the CONTAINING predicate rewrite
optimization.

NOREWRITE(LIKE) None Specifying the LIKE keyword will disable only
the LIKE predicate rewrite optimization.

NOREWRITE (STARTING_
WITH)

None Specifying the STARTING_WITH keyword will
disable only the STARTING WITH predicate
rewrite optimization.

OBLR So Displays query outline in Binary Language
Representation (BLR).

OLD_COST_MODEL None Enables the old cost model. The OLD_COST_
MODEL keyword has the same action as the
RDMS$USE_OLD_COST_MODEL logical name.

1RDMS$DEBUG_FLAGS logical name
2This keyword may not be negated.

(continued on next page)

SQL Statements 8–261

SET FLAGS Statement

Table 8–6 (Cont.) Debug Flag Keywords

Keyword
Debug Flags
Equivalent1 Comment

OPTIMIZATION_LEVEL None Used to change the default optimization level
for a query. If the query explicitly uses the
OPTIMIZE FOR clause, or is compiled within
an environment which overrides the default
using a method such as SET OPTIMIZATION
LEVEL, then no change will occur. If the query
uses the default optimization level, then the
optimization will be modified by this flag. With
no option specified or an empty options list,
this will default to TOTAL TIME. The flag
NOOPTIMIZATION_LEVEL will revert to the
default Rdb behavior.

OPTIMIZATION_
LEVEL(FAST_FIRST)

None Sets FAST FIRST as the default optimization
level for queries in all sessions.

OPTIMIZATION_
LEVEL(TOTAL_TIME)

None Sets TOTAL TIME as the default optimization
level for queries in all sessions.

OUTLINE Ss Displays query outline for this query (can be
used without STRATEGY keyword)

PREFIX3 Bn Used with BLR keyword to inhibit offset
numbering and other formatting of binary
language representation display.

1RDMS$DEBUG_FLAGS logical name
3Enabled by default

(continued on next page)

8–262 SQL Statements

SET FLAGS Statement

Table 8–6 (Cont.) Debug Flag Keywords

Keyword
Debug Flags
Equivalent1 Comment

REBUILD_SPAM_PAGES None The flag REBUILD_SPAM_PAGES is for use in
conjunction with the DDL commands ALTER
TABLE, ALTER STORAGE MAP, and ALTER
INDEX. When changing the row length or
THRESHOLDS clause for a table or index, the
corresponding SPAM pages for the logical area
may require rebuilding. By default, these DDL
commands update the AIP and set a flag to
indicate that the SPAM pages should be rebuilt.
However, this flag may be set prior to executing
a COMMIT for the transaction and the rebuild
will take place within this transaction. Use SET
FLAGS ’NOREBUILD_SPAM_PAGES’ to negate
this flag.

REWRITE None When no parameters are provided, all query
rewrite optimizations are enabled.

REWRITE (CONTAINING) None Specifying the CONTAINING keyword will
enable only the CONTAINING predicate rewrite
optimization.

REWRITE(LIKE) None Specifying the LIKE keyword will enable only
the LIKE predicate rewrite optimization.

REWRITE (STARTING_
WITH)

None Specifying the STARTING_WITH keyword will
enable only the STARTING WITH predicate
rewrite optimization.

REQUEST_NAMES Sn Displays the names of user requests, triggers,
and constraints

REVERSE_SCAN None Enables the reverse index scan strategy. The
NOREVERSE_SCAN keyword has the same
action as the RDMS$DISABLE_REVERSE_
SCAN logical name.

1RDMS$DEBUG_FLAGS logical name

(continued on next page)

SQL Statements 8–263

SET FLAGS Statement

Table 8–6 (Cont.) Debug Flag Keywords

Keyword
Debug Flags
Equivalent1 Comment

SCROLL_EMULATION L Disables scrolling for old-style LIST OF BYTE
VARYING (segmented string) format. The
SCROLL_EMULATION flag has the same action
as setting the RDMS$DIAG_FLAGS logical
name to L.

SELECTIVITY None Refers to the methods by which the static
optimizer estimates predicate selectivity. This
flag takes a numeric value in parentheses from 0
to 3.
0 = standard (non-aggressive, non-sampled)
selectivity
1 = aggressive + non-sampled selectivity
2 = sampled + non-aggressive selectivity
3 = sampled + aggressive selectivity.
By default the flag is disabled, which is the
equivalent of setting its value to 0.

SEQ_CACHE(n) None Adjusts the sequence cache size for the process
issuing the SET FLAGS statement. The value
n must be a numeric value greater than
2. (Specifying a value of 1 is equivalent to
specifying NOSEQ_CACHE.) Use SEQ_CACHE
to override the CACHE setting for all sequences
subsequently referenced by the application. The
new cache size does not affect any sequence that
has already been referenced, or any sequence
defined as NOCACHE.

SOLUTIONS OsS Displays traces on optimizer solutions.
SORTKEY_EXT S Reports if ORDER BY (or SORTED BY) is

referencing only external (constant) value. The
SORTKEY_EXT flag has the same action as
setting the RDMS$DIAG_FLAGS logical name
to S.

SORT_STATISTICS R Displays sort statistics during execution.

1RDMS$DEBUG_FLAGS logical name

(continued on next page)

8–264 SQL Statements

SET FLAGS Statement

Table 8–6 (Cont.) Debug Flag Keywords

Keyword
Debug Flags
Equivalent1 Comment

STOMAP_STATS As Displays the processing of storage maps for any
tables that refer to the dropped storage area.
The output is prefixed with "~As".

STRATEGY S Shows the optimizer strategy. If a table is
strictly partitioned, the text "(partitioned
scan#nn)" appears after the table name, where
nn indicates the leaf number for a sequential
scan (there may be several within a single
query).

TEST_SYSTEM None This flag is used by the Oracle Rdb testing
environment to modify the output of various
functions, trace and debugging displays. It
is used to eliminate data in test output that
would normally cause differences between test
executions.

TRACE Xt Enables output from TRACE statement
TRANSACTION_
PARAMETERS

T Displays the transaction parameter buffer
during SET TRANSACTION, COMMIT, and
ROLLBACK and during stored procedure
compilation

TRANSITIVITY None Enables transitivity between selections and join
predicates. The NOTRANSITIVITY keyword
has the same action as the RDMS$DISABLE_
TRANSITIVITY logical name.

VALIDATE_ROUTINE None Enables revalidation of an invalidated stored
procedure or stored function. The VALIDATE_
ROUTINE keyword has the same action as the
RDMS$VALIDATE_ROUTINE logical name.

VARIANCE_DOF(n) None Sets the default degree of freedom (DOF) for
calculation of the mean (average) in small
samples (instead of using the VARIANCE
function). Only the values 0 and 1 are allowed.

1RDMS$DEBUG_FLAGS logical name

(continued on next page)

SQL Statements 8–265

SET FLAGS Statement

Table 8–6 (Cont.) Debug Flag Keywords

Keyword
Debug Flags
Equivalent1 Comment

WARN_DDL Xd Sometimes legal data definitions can have side
effects, this flag allows these warning to be
enabled and disabled. This flag is is enabled by
default, with the exception for when attached by
PATHNAME. The data definition statement still
succeeds even with the reported warnings. The
database administrator may choose to rollback
the statement based on this feedback.

WARN_INVALID Xw Reports invalidated objects during the ALTER
INDEX, DROP INDEX, DROP TABLE, and
DROP MODULE statements.

WATCH_CALL Xa Traces the execution of queries, triggers and
stored functions and procedures. The output
includes the name of the trigger, function or
procedure or "unnamed" for an anonymous
query. In most cases a query can be named
using the OPTIMIZE AS clause. It also includes
the value of CURRENT_USER during the
execution of that routine. CURRENT_USER
may be inherited from any module that uses the
AUTHORIZATION clause.

WATCH_OPEN Xo Traces all queries executed on the database.
This may include SQL runtime system queries
to lookup table names, etc as well as queries
executed by the application. The output includes
the 32 digit hex identifier, the same as used by
the CREATE OUTLINE statement. This value
uniquely identifies the query being executed.
If a query is a stored routine (function or
procedure) then the notation "(stored)" is
appended, if the query is named then it will
be classified as "(query)", otherwise it will be
designated as "(unnamed)".

1RDMS$DEBUG_FLAGS logical name

(continued on next page)

8–266 SQL Statements

SET FLAGS Statement

Table 8–6 (Cont.) Debug Flag Keywords

Keyword
Debug Flags
Equivalent1 Comment

ZIGZAG_MATCH None Enables zigzag key skip on both outer and inner
match loops. When you specify the ZIGZAG_
MATCH keyword with the NOZIGZAG_OUTER
keyword, it disables zigzag key skip on the
outer loop (and has the same action as setting
the RDMS$DISABLE_ZIGZAG_MATCH logical
name to 1). The NOZIGZAG_MATCH keyword
disables zigzag key skip on both outer and inner
match loops (and has the same action as setting
the RDMS$DISABLE_ZIGZAG_MATCH logical
name to 2).

ZIGZAG_OUTER None Enables zigzag key skip on the outer loop. See
the entry for ZIGZAG_MATCH for information
on the action taken when you specify ZIGZAG_
OUTER and ZIGZAG_MATCH together.

1RDMS$DEBUG_FLAGS logical name

NOFLAGS
The SET NOFLAGS statement disables all currently enabled flags. It is
equivalent to SET FLAGS ’NONE’. NOFLAGS is only permitted in Interactive
SQL.

ON ALIAS alias-name
Using the ON ALIAS clause allows the database administrator to set flags on
just one database alias instead of using all currently attached databases. Use
the name of an alias as declared by the ATTACH or CONNECT statement or,
if none was specified, use the default alias name RDB$DBHANDLE.

Usage Notes

• The specified flag is processed by each database to which you are currently
attached.

• The SET FLAGS statement overrides the RDMS$DEBUG_FLAGS logical
name or the RDMS$SET_FLAGS logical name at the command level.

SQL Statements 8–267

SET FLAGS Statement

• The keywords can be abbreviated to the smallest nonambiguous length.
The minimum length is 2 characters.

• Upper- and lowercase are equivalent for keywords.

• The SET FLAGS statement does not persist beyond a database attach.

• The RDMS$SET_FLAGS logical name is processed during the attach
operation. An exception is raised if an error is found in the equivalence
string, and the attach to the database fails. The SQL SHOW FLAGS
statement will display settings made with the RDMS$SET_FLAGS
and RDMS$DEBUG_FLAGS logical names. Settings made with the
RDMS$DEBUG_FLAGS logical name are superseded by keywords specified
by RDMS$SET_FLAGS.

• To set the query mode with a logical name, define the RDMS$BIND_
OUTLINE_MODE logical name to the desired mode number. To set the
query mode with a logical name, define the RDMS$BIND_OUTLINE_
MODE logical name to the desired mode number.

• To set the AUTO_OVERRIDE keyword, you must have the DBADM
(administrator) privilege on the database. The DBADM privilege can be
granted explicitly or can be inherited from the OpenVMS system privileges.

If you do not have the required privilege, then the SET FLAG statement
fails and returns the NO_PRIV error.

• The AUTO_OVERRIDE flag can be used to allow updates to selected
AUTOMATIC columns during INSERT so that rows could be reloaded, or
during UPDATE to adjust incorrectly stored values.

For the INSERT statement, ’AUTO_OVERRIDE’ allows assignment
to any AUTOMATIC column, and any AUTOMATIC INSERT column
omitted from the column list will be evaluated normally.

For the UPDATE statement, ’AUTO_OVERRIDE’ allows direct
assignment of values to any AUTOMATIC column. No AUTOMATIC
columns are evaluated.

• When a generated outline is added to the database it will only be used
when the mode is set, either by the SET FLAGS statement or by using the
logical name RDMS$BIND_OUTLINE_MODE.

• The EXECUTION keyword can be followed immediately by a numeric
value in parentheses. This represents the number of lines to display before
stopping the execution trace for query execution. The default is 100. For
example:

8–268 SQL Statements

SET FLAGS Statement

SQL> SET FLAGS ’EXECUTION(1000)’;
SQL> SHOW FLAGS

Alias RDB$DBHANDLE:
Flags currently set for Oracle Rdb:

PREFIX,EXECUTION(1000)

There cannot be a space between the keyword and the numeric value in
parentheses.

• Use VALIDATE_ROUTINE when routines, query outlines, and triggers
become invalid due to the following actions:

When a table is dropped using the CASCADE option, any procedure or
function that references the table is marked invalid.

When a table is dropped (using either the CASCADE or RESTRICT
options) any query outline that references the table is marked as
invalid.

When a module is dropped using the CASCADE option, any procedure,
function, or query outline that references the module is marked invalid.
A query outline references a module when it uses a temporary table
declared at the module level.

When a routine is dropped using CASCADE, any trigger or routine
that references that routine is marked invalid.

When an index is dropped, or altered to have MAINTENANCE IS
DISABLED, any query outline that references the index is marked as
invalid.

• The DATABASE_PARAMETERS keyword generates output only during
ATTACH to the database which happens prior to the SET FLAGS
statement executing.

This option is therefore only useful when used with the RDMS$SET_
FLAGS logical name.

SQL Statements 8–269

SET FLAGS Statement

$ define RDMS$SET_FLAGS "database_parameters"
$ sql$
SQL> Attach ’File db$:scratch’;
ATTACH #1, Database DISK:[DOCS.V71]SCRATCH.RDB;1
~P Database Parameter Buffer (version=2, len=79)
0000 (00000) RDB$K_DPB_VERSION2
0001 (00001) RDB$K_FACILITY_ALL
0002 (00002) RDB$K_DPB2_IMAGE_NAME "NODE::DISK:[DIR]SQL$70.EXE;1"
0040 (00064) RDB$K_FACILITY_ALL
0041 (00065) RDB$K_DPB2_DBKEY_SCOPE (Transaction)
0045 (00069) RDB$K_FACILITY_ALL
0046 (00070) RDB$K_DPB2_REQUEST_SCOPE (Attach)
004A (00074) RDB$K_FACILITY_RDB_VMS
004B (00075) RDB$K_DPB2_CDD_MAINTAINED (No)
RDMS$BIND_WORK_FILE = "DISK:[DIR]RDMSTTBL$UEOU3LQ0RV2.TMP;" (Visible = 0)
SQL> Exit
DETACH #1

• When you use the INDEX_COLUMN_GROUP keyword, applications can
make better use of the index column group information specified in indexes.
When you do not use this keyword, the Oracle Rdb optimizer may estimate
much higher cardinalities for the chosen solution if the selection predicate
specifies only some of the leading segments on a multisegment index. This
happens, for instance, if you specify an equality on the first segment of a
two-segment index.

This slight overestimation is not a significant problem on relatively small
tables but becomes a more significant problem when the select operation
involves a sort (in particular, the OpenVMS SORT facility) where the sort
buffer is preallocated based on its estimated cardinality of the solution.

• There is no debug flags equivalent for the MODE(n) or NOMODE
keywords. Instead, you can use the RDMS$BIND_OUTLINE_MODE
logical name.

• You might use the SEQ_CACHE keyword when you are loading many rows
with the RMU Load command. This command is most efficient when all of
the sequence values are allocated in large batches. For example:

$ DEFINE RDMS$SET_FLAGS "SEQ_CACHE(10000)"
$ RMU/LOAD/COMMIT_EVERY=50000 DATABASE TABLE FILE

In this example, it is assumed that an AUTOMATIC column is defined
such that SEQUENCE.NEXTVAL is executed.

• All indices which are created for constraints are of type SORTED. If the
database SYSTEM INDEX default is SORTED RANKED then this same
default is used by the AUTO_INDEX option.

8–270 SQL Statements

SET FLAGS Statement

• Use the INDEX_STATS option with AUTO_INDEX to see a description of
the indices which are created.

If a suitable index already exists then it will be used in preference to
creating a new index.

All indices are created in the DEFAULT storage area, there is no facility to
add storage maps for these indices during their creation.

The index is given the same name as the constraint for which it was
created. When the constraint is dropped the index will remain and must
be dropped manually. It is possible that the index is used by multiple
constraints.

• The SELECTIVITY flag affects user SELECT, UPDATE and DELETE
statements provided that those statements do not explicitly or implicitly
specify an OPTIMIZE WITH SELECTIVITY clause.

• The TRACE statement can be used from any stored routine. However,
because stored routines (nested or otherwise) are only loaded once per
session, the TRACE flag must be enabled before invoking the routines for
the first time.

• When using interactive or dynamic SQL both WATCH_CALL and WATCH_
OPEN will generate trace lines for the queries performed by the SQL
runtime system against the Rdb system tables. There is no mechanism to
disable the trace of such information.

• The WATCH_CALL and WATCH_OPEN flags cause queries and routines
to be modified to output this information. This might add some extra CPU
overhead to the application while this information is collected. Even when
the flags are disabled there exists some overhead that is not eliminated
until the module or query is released, usually at DISCONNECT time.

• You cannot provide an outline name for a query in many situations, such
as when you use third party software. In these situations, Oracle Rdb
tries to locate an outline with a matching identifier. Because the optimizer
generates an identifier as a hashed value that depends on the query
structure, small changes in the query, such as different literal values,
change the generated identifier.

You can use the ALTERNATE_OUTLINE_ID(LITERALS) keyword
(abbreviated as ALT(LIT)) to control the alternate outline identifiers.
Set this keyword by using either the SET FLAGS statement or the
RDMS$SET_FLAGS logical name. If this keyword is set, the optimizer
discards literal values when producing the identifiers.

SQL Statements 8–271

SET FLAGS Statement

SQL> set flags ’alt(LIT), outline’;
SQL> select * from employees where employee_id = ’1’;
-- Rdb Generated Outline : 19-SEP-2001 13:52
create outline QO_847AD7287E247D37_00000000
id ’847AD7287E247D37E8E4CC8221FFC12E’
mode 0
as (

query (
-- For loop

subquery (
EMPLOYEES 0 access path index EMP_EMPLOYEE_ID
)

)
)

compliance optional ;
0 rows selected
SQL> select * from employees where employee_id = ’9999’;
-- Rdb Generated Outline : 19-SEP-2001 13:52
create outline QO_847AD7287E247D37_00000000
id ’847AD7287E247D37E8E4CC8221FFC12E’
mode 0
as (

query (
-- For loop

subquery (
EMPLOYEES 0 access path index EMP_EMPLOYEE_ID
)

)
)

compliance optional ;
0 rows selected

You can store this more generic outline to use in any similar query where
only the literal values differ, for example:

SQL> set flags ’alt(lit)’;
SQL> create outline o1 from (select * from employees where employee_id = ’1’);
SQL> set flags ’strat’;
SQL> select * from employees where employee_id = ’1’;
~S: Outline "O1" used
Get Retrieval by index of relation EMPLOYEES
Index name EMP_EMPLOYEE_ID [1:1] Direct lookup

0 rows selected
SQL> select * from employees where employee_id = ’AAAAAA’;
~S: Outline "O1" used
Conjunct Get Retrieval by index of relation EMPLOYEES
Index name EMP_EMPLOYEE_ID [1:1] Direct lookup

0 rows selected

8–272 SQL Statements

SET FLAGS Statement

Any outline stored for a query without the ALTERNATE_OUTLINE_ID
flag being set will be created using the full query as in previous versions
and will take precedence over any generic outline, as seen in the following
example.

SQL> set noflags;
SQL> create outline o1 from (select * from employees where employee_id = ’1’);
SQL> set flags ’strat’;
SQL> select * from employees where employee_id = ’1’;
~S: Outline "O1" used
Get Retrieval by index of relation EMPLOYEES
Index name EMP_EMPLOYEE_ID [1:1] Direct lookup

0 rows selected
SQL> select * from employees where employee_id = ’9999’;
Get Retrieval by index of relation EMPLOYEES
Index name EMP_EMPLOYEE_ID [1:1] Direct lookup

0 rows selected
SQL> set noflags;
SQL> set flags ’alternate(lit),nooutline’;
SQL> create outline o2 from (select * from employees where employee_id = ’1’);
SQL>
SQL> set flags ’strat’;
SQL> select * from employees where employee_id = ’1’;
~S: Outline "O1" used
Get Retrieval by index of relation EMPLOYEES
Index name EMP_EMPLOYEE_ID [1:1] Direct lookup

0 rows selected
SQL> select * from employees where employee_id = ’9999’;
~S: Outline "O2" used
Get Retrieval by index of relation EMPLOYEES
Index name EMP_EMPLOYEE_ID [1:1] Direct lookup

0 rows selected
SQL>
SQL> set flags ’noalt’;
SQL> select * from employees where employee_id = ’1’;
~S: Outline "O1" used
Get Retrieval by index of relation EMPLOYEES
Index name EMP_EMPLOYEE_ID [1:1] Direct lookup

0 rows selected
SQL> select * from employees where employee_id = ’9999’;
Get Retrieval by index of relation EMPLOYEES
Index name EMP_EMPLOYEE_ID [1:1] Direct lookup

0 rows selected
SQL> drop outline o1;
SQL> set flags ’alt(literals)’;
SQL> select * from employees where employee_id = ’1’;
~S: Outline "O2" used
Get Retrieval by index of relation EMPLOYEES
Index name EMP_EMPLOYEE_ID [1:1] Direct lookup

0 rows selected
SQL> select * from employees where employee_id = ’9999’;

SQL Statements 8–273

SET FLAGS Statement

~S: Outline "O2" used
Get Retrieval by index of relation EMPLOYEES
Index name EMP_EMPLOYEE_ID [1:1] Direct lookup

0 rows selected

As shown in the previous example, Rdb will try to locate an outline using
the more generic identifier only if the ALTERNATE_OUTLINE_ID flag has
been set.

The ALTERNATE_OUTLINE_ID flag is not set by default and must be
explictly set using either SET FLAGS or the RDMS$SET_FLAGS logical.

Any query outline created outside the influence of ALTERNATE_
OUTLINE_ID will continue to work because Rdb will use the full signature
if no alternate is found.

Examples

Example 1: Enabling and disabling database system debug flags

SQL> ATTACH ’FILENAME MF_PERSONNEL’;
SQL> SHOW FLAGS

Alias RDB$DBHANDLE:
Flags currently set for Oracle Rdb:

PREFIX
SQL>
SQL> SET FLAGS ’TRACE’;
SQL> SHOW FLAGS

Alias RDB$DBHANDLE:
Flags currently set for Oracle Rdb:

PREFIX,TRACE
SQL>
SQL> SET FLAGS ’STRATEGY’;
SQL> SHOW FLAGS

Alias RDB$DBHANDLE:
Flags currently set for Oracle Rdb:

STRATEGY,PREFIX,TRACE
SQL>
SQL> SET FLAGS ’NOTRACE’;
SQL> SHOW FLAGS

Alias RDB$DBHANDLE:
Flags currently set for Oracle Rdb:

STRATEGY,PREFIX
SQL>
SQL> SET NOFLAGS;
SQL> SHOW FLAGS

8–274 SQL Statements

SET FLAGS Statement

Alias RDB$DBHANDLE:
Flags currently set for Oracle Rdb:

PREFIX
SQL>

Example 2: Using the PREFIX keyword

SQL> ATTACH ’FILENAME mf_personnel’;
SQL> --
SQL> -- Show that the PREFIX keyword is enabled by default
SQL> --
SQL> SHOW FLAGS

Alias RDB$DBHANDLE:
Flags currently set for Oracle Rdb:

PREFIX
SQL> --
SQL> -- Enable TRACE
SQL> --
SQL> SET FLAGS ’TRACE’;
SQL> SHOW FLAGS

Alias RDB$DBHANDLE:
Flags currently set for Oracle Rdb:

PREFIX,TRACE
SQL> --
SQL> -- Show that the prefix is displayed
SQL> --
SQL> BEGIN
cont> TRACE ’AAA’;
cont> END;
~Xt: AAA
SQL> --
SQL> -- Turn off the prefix
SQL> --
SQL> SET FLAGS ’NOPREFIX’;
SQL> SHOW FLAGS

Alias RDB$DBHANDLE:
Flags currently set for Oracle Rdb:

TRACE
SQL> --
SQL> -- Show that the prefix is no longer displayed
SQL> --
SQL> BEGIN
cont> TRACE ’AAA’;
cont> END;
AAA

SQL Statements 8–275

SET FLAGS Statement

Example 3: Using Host Variables in Interactive SQL

The example also demonstrates using literal strings with multiple options to
enable and disable flags.

SQL> SHOW FLAGS
Alias RDB$DBHANDLE:
Flags currently set for Oracle Rdb:

PREFIX
SQL> -- declare a host variable to be used with SET FLAGS
SQL> declare :hv char(40);
SQL> -- assign a value to the variable
SQL> begin
cont> set :hv = ’strategy, outline’;
cont> end;
SQL> -- use the host variable to enable or disable flags
SQL> set flags :hv;
SQL> show flags

Alias RDB$DBHANDLE:
Flags currently set for Oracle Rdb:

STRATEGY,PREFIX,OUTLINE
SQL> -- use a string literal directly with the SET FLAGS statement
SQL> set flags ’noprefix,execution(10)’;
SQL> show flags

Alias RDB$DBHANDLE:
Flags currently set for Oracle Rdb:

STRATEGY,OUTLINE,EXECUTION(10)

8–276 SQL Statements

SET FLAGS Statement

Example 4: Using the MODE(n) Flag

SQL> SET FLAGS ’MODE(10), OUTLINE’;
SQL> SHOW FLAGS
Alias RDB$DBHANDLE:
Flags currently set for Oracle Rdb:

PREFIX,OUTLINE,MODE(10)
SQL> SELECT COUNT(*) FROM EMPLOYEES;
-- Rdb Generated Outline : 30-MAY-1997 16:35
create outline QO_B3F54F772CC05435_0000000A
id ’B3F54F772CC054350B2B454D95537995’
mode 10
as (

query (
-- For loop

subquery (
subquery (
EMPLOYEES 0 access path index EMP_EMPLOYEE_ID
)

)
)

)
compliance optional ;

100
1 row selected

SQL Statements 8–277

SET FLAGS Statement

Example 5: Using the WARN_INVALID Debug Flag

SQL> SET FLAGS ’WARN_INVALID’;
SQL> SHOW FLAGS;
Alias RDB$DBHANDLE:
Flags currently set for Oracle Rdb:

PREFIX,WARN_INVALID
SQL> -- warning because of dependencies
SQL> DROP TABLE T1 CASCADE;
~Xw: Routine "P3" marked invalid
~Xw: Routine "P2" marked invalid
~Xw: Routine "P1" marked invalid
SQL>
SQL> -- Create an outline that references an INDEX.
SQL> CREATE TABLE T1 (A INTEGER, B INTEGER);
SQL> CREATE INDEX I1 ON T1 (A);
SQL> CREATE OUTLINE QO1
cont> ID ’19412AB61A7FE1FA6053F43F8F01EE6D’
cont> MODE 0
cont> AS (
cont> QUERY (
cont> SUBQUERY (
cont> T1 0 ACCESS PATH INDEX I1
cont>)
cont>)
cont>)
cont> COMPLIANCE OPTIONAL;
SQL>
SQL> -- Warning because of disabled index
SQL> ALTER INDEX I1
cont> MAINTENANCE IS DISABLED;
~Xw: Outline "QO1" marked invalid (index "I1" disabled)
SQL> SHOW OUTLINE QO1;

QO1
Object has been marked INVALID

Source:
CREATE OUTLINE QO1
ID ’19412AB61A7FE1FA6053F43F8F01EE6D’
MODE 0
AS (

QUERY (
SUBQUERY (
T1 0 ACCESS PATH INDEX I1
)

)
)

COMPLIANCE OPTIONAL;

8–278 SQL Statements

SET FLAGS Statement

Example 6: Using the INTERNAL Keyword to Display Trigger Actions

SQL> -- The following code shows the strategy used by the trigger
SQL> -- actions on the AFTER DELETE trigger on EMPLOYEES
SQL> SET FLAGS ’STRATEGY, INTERNALS, REQUEST_NAMES’;
SQL> SHOW FLAGS
Alias RDB$DBHANDLE:
Flags currently set for Oracle Rdb:

INTERNALS,STRATEGY,PREFIX,REQUEST_NAMES
SQL> DELETE FROM EMPLOYEES WHERE EMPLOYEE_ID = ’00164’;
~S: Trigger name EMPLOYEE_ID_CASCADE_DELETE
Get Temporary relation Retrieval by index of relation DEGREES
Index name DEG_EMP_ID [1:1]

~S: Trigger name EMPLOYEE_ID_CASCADE_DELETE
Get Temporary relation Retrieval by index of relation JOB_HISTORY
Index name JOB_HISTORY_HASH [1:1]

~S: Trigger name EMPLOYEE_ID_CASCADE_DELETE
Get Temporary relation Retrieval by index of relation SALARY_HISTORY
Index name SH_EMPLOYEE_ID [1:1]

~S: Trigger name EMPLOYEE_ID_CASCADE_DELETE
Conjunct Get Retrieval by index of relation DEPARTMENTS
Index name DEPARTMENTS_INDEX [0:0]

Temporary relation Get Retrieval by index of relation EMPLOYEES
Index name EMPLOYEES_HASH [1:1] Direct lookup

1 row deleted

Example 7: Using the INDEX_COLUMN_GROUP Keyword

SQL> -- The table STUDENTS has an index on the two columns
SQL> -- STU_NUM and COURSE_NUM. When the INDEX_COLUMN_GROUP
SQL> -- keyword is not set, the optimizer uses a fixed
SQL> -- proportion of the table cardinality based on the equality
SQL> -- with the STU_NUM column. In this example, 5134 rows are expected,
SQL> -- when in reality, only 9 are returned by the query.
SQL> CREATE INDEX STUDENT_NDX ON STUDENTS (STU_NUM,COURSE_NUM DESC);
SQL> --
SQL> SELECT STU_NUM FROM STUDENTS
cont> WHERE STU_NUM = 191270771
cont> ORDER BY OTHER_COLUMN;
Solutions tried 2
Solutions blocks created 1
Created solutions pruned 0
Cost of the chosen solution 4.5644922E+03
Cardinality of chosen solution 5.1342500E+03

SQL Statements 8–279

SET FLAGS Statement

~O: Physical statistics used
Sort
SortId# 7., # Keys 2
Item# 1, Dtype: 2, Order: 0, Off: 0, Len: 1
Item# 2, Dtype: 35, Order: 0, Off: 1, Len: 8
LRL: 32, NoDups:0, Blks:327, EqlKey:0, WkFls: 2

Leaf#01 BgrOnly STUDENTS Card=164296
BgrNdx1 STUDENT_NDX [1:1] Fan=14
191270771
191270771
191270771
191270771
191270771
191270771
191270771
191270771

SORT(9) SortId# 7, --------------------- Version: V5-000
Records Input: 9 Sorted: 9 Output: 0
LogRecLen Input: 32 Intern: 32 Output: 32
Nodes in SoTree: 5234 Init Dispersion Runs: 0
Max Merge Order: 0 Numb.of Merge passes: 0
Work File Alloc: 0
MBC for Input: 0 MBC for Output: 0
MBF for Input: 0 MBF for Output: 0
Big Allocated Chunk: 4606464 busy
191270771

9 rows selected
SQL> --
SQL> -- When you use the SET FLAGS statement to set the
SQL> -- INDEX_COLUMN_GROUP keyword, it activates the optimizer
SQL> -- to consider the index segment columns as a workload column
SQL> -- group, compute the statistics for duplicity factor and null
SQL> -- factor dynamically, and then apply them in estimating the
SQL> -- cardinality of the solution.
SQL> --
SQL> SET FLAGS ’INDEX_COLUMN_GROUP’;
SQL> -- The following is the optimizer cost estimate and sort output trace
SQL> -- for the previous query with INDEX_COLUMN_GROUP enabled. The optimizer
SQL> -- now estimates a lower cardinality of about 8 rows.
Solutions tried 2
Solutions blocks created 1
Created solutions pruned 0
Cost of the chosen solution 3.8118614E+01
Cardinality of chosen solution 8.3961573E+00
~O: Workload and Physical statistics used
Sort
SortId# 2., # Keys 2
Item# 1, Dtype: 2, Order: 0, Off: 0, Len: 1
Item# 2, Dtype: 35, Order: 0, Off: 1, Len: 8
LRL: 32, NoDups:0, Blks:7, EqlKey:0, WkFls: 2

Leaf#01 BgrOnly STUDENTS Card=164296
BgrNdx1 STUDENT_NDX [1:1] Fan=14

8–280 SQL Statements

SET FLAGS Statement

191270771
191270771
191270771
191270771
191270771
191270771
191270771
191270771

SORT(2) SortId# 2, --------------------- Version: V5-000
Records Input: 9 Sorted: 9 Output: 0

LogRecLen Input: 32 Intern: 32 Output: 32
Nodes in SoTree: 114 Init Dispersion Runs: 0
Max Merge Order: 0 Numb.of Merge passes: 0
Work File Alloc: 0
MBC for Input: 0 MBC for Output: 0
MBF for Input: 0 MBF for Output: 0
Big Allocated Chunk: 87552 idle

191270771
9 rows selected

Example 8: Using the AUTO_OVERRIDE Keyword

SQL> -- Suppose that after year 2000 testing was performed on a
SQL> -- production system, the system date and time were not reset
SQL> -- to the correct date. This was not noticed until
SQL> -- after transactions for a full day had been stored. To
SQL> -- correct this problem, the database administrator overrides
SQL> -- the READ ONLY characteristic of the AUTOMATIC column and
SQL> -- adjusts the date and time.
SQL> SELECT * FROM ACCOUNTS
cont> WHERE LAST_UPDATE > DATE’2001-1-1’;

ACCOUNT_NO LAST_NAME LAST_UPDATE CURRENT_BALANCE
NULL Smith 2001-06-02 100000.000

1 row selected
SQL> -- Attempts to fix the date and time fail because the
SQL> -- column is AUTOMATIC.
SQL> UPDATE ACCOUNTS
cont> SET LAST_UPDATE = LAST_UPDATE - INTERVAL’1’ YEAR
cont> WHERE LAST_UPDATE > DATE’2000-1-1’;
%RDB-E-READ_ONLY_FIELD, attempt to update the read-only field LAST_UPDATE
SQL> --
SQL> SET FLAGS ’AUTO_OVERRIDE’;
SQL> SHOW FLAGS
Alias RDB$DBHANDLE:
Flags currently set for Oracle Rdb:

PREFIX,AUTO_OVERRIDE
SQL>--
SQL> -- Fix the date and time.
SQL> UPDATE ACCOUNTS
cont> SET LAST_UPDATE = LAST_UPDATE - INTERVAL’1’ YEAR
cont> WHERE LAST_UPDATE > DATE’2000-1-1’;
1 row updated

SQL Statements 8–281

SET FLAGS Statement

SQL>
SQL> SELECT * FROM ACCOUNTS;

ACCOUNT_NO LAST_NAME LAST_UPDATE CURRENT_BALANCE
NULL Smith 1999-06-02 100000.000

1 row selected
SQL>
SQL> SET FLAGS ’NOAUTO_OVERRIDE’;

Example 9: Using the AUTO_INDEX option

SQL> set dialect ’SQL92’;
SQL> set flags ’AUTO_INDEX,INDEX_STATS’;
SQL> create table PERSON
cont> (employee_id integer primary key,
cont> manager_id integer references PERSON (employee_id),
cont> last_name char(30),
cont> first_name char(30),
cont> unique (last_name, first_name));
~Ai create index "PERSON_PRIMARY_EMPLOYEE_ID"
~Ai larea length is 430
~Ai storage area (default) larea=57
~Ai create sorted index, ikey_len=5
Sort Get Retrieval sequentially of relation PERSON
~Ai create index partition, node=430 %fill=0
~Ai create index "PERSON_FOREIGN1"
~Ai larea length is 215
~Ai storage area is shared: larea=57
~Ai create sorted index, ikey_len=5
Sort Get Retrieval sequentially of relation PERSON
~Ai create index partition, node=0 %fill=0
~Ai create index "PERSON_UNIQUE1"
~Ai larea length is 215
~Ai storage area is shared: larea=57
~Ai create sorted index, ikey_len=62
Sort Get Retrieval sequentially of relation PERSON
~Ai create index partition, node=0 %fill=0
SQL>
SQL> show table (index) person
Information for table PERSON

Indexes on table PERSON:
PERSON_FOREIGN1 with column MANAGER_ID
Duplicates are allowed
Type is Sorted
Key suffix compression is DISABLED

PERSON_PRIMARY_EMPLOYEE_ID with column EMPLOYEE_ID
No Duplicates allowed
Type is Sorted
Key suffix compression is DISABLED
Node size 430

8–282 SQL Statements

SET FLAGS Statement

PERSON_UNIQUE1 with column LAST_NAME
and column FIRST_NAME

Duplicates are allowed
Type is Sorted
Key suffix compression is DISABLED

SQL>

Example 10: Using the WATCH_CALL option

This example shows the output of WATCH_CALL for an INSERT statement
which causes an AFTER INSERT trigger (AFTER_INSERT) to be executed
which calls an SQL function WRITE_TEXT to trace the input data. It then
traces a query named using OPTIMIZE AS clause.

SQL> insert into SAMPLE_T values (’Fred’);
~Xa: routine "(unnamed)", user=SMITH
~Xa: routine "AFTER_INSERT", user=SMITH
~Xa: routine "WRITE_TEXT", user=SMITH
~Xt: Fred
1 row inserted
SQL> select * from SAMPLE_T
cont> optimize as LOOKUP_SAMPLE_T;
~Xa: routine "LOOKUP_SAMPLE_T", user=SMITH
NEW_NAME
Fred
1 row selected

Example 11: Using the WATCH_OPEN option

This example shows the output of WATCH_OPEN for the same INSERT
statement as seen in example 10.

SQL> insert into SAMPLE_T values (’Fred’);
~Xo: Start Request B667E51E3625026EB7FFF3F4D3A16DC3 (unnamed)
~Xo: Start Request A8568053FE5A1A0852A1BE83A884016F "AFTER_INSERT" (query)
~Xo: Start Request 08AE59062657299B4768F6C2DFB6928E "WRITE_TEXT" (stored)
~Xt: Fred
1 row inserted
SQL>
SQL> select * from SAMPLE_T
cont> optimize as LOOKUP_SAMPLE_T;
~Xo: Start Request F6025FAB1DD36B0DE0E52F3A9641BC5F "LOOKUP_SAMPLE_T" (query)
NEW_NAME
Fred
Fred
2 rows selected

SQL Statements 8–283

SET FLAGS Statement

Example 12: Using SET FLAGS from an application program

The SET FLAGS statement can be executed from Dynamic SQL using one of
two methods.

• The first method is immediate execution by passing a string literal. The
string literal argument to SET FLAGS requires that the single quote
marks be doubled for correct inclusion in the string literal argument to
EXECUTE IMMEDIATE.

• The second method is to pass the entire SET FLAGS statement in a
parameter to EXECUTE IMMEDIATE

exec sql
execute immediate ’set flags ’’strategy’’’;

The entire SET FLAGS statement could be in a parameter to EXECUTE
IMMEDIATE

exec sql
execute immediate :set_flags_text;

If SET FLAGS is executed multiple times it can be prepared as a dynamic
statement (PREPARE) and then the statement name used for multiple
executions. The input marker (?) is substituted on different calls to EXECUTE
the previously prepared statement.

#include <string.h>
#include <sql_rdb_headers.h>

void main ()
{
int SQLCODE;
char myflags[40];

exec sql
prepare set_flags_stmt from ’set flags ?’;

if (SQLCODE != 0)
sql_signal ();

strcpy (myflags, "transaction,item_list");
exec sql

execute set_flags_stmt using :myflags;
if (SQLCODE != 0)

sql_signal ();

exec sql
start transaction;

if (SQLCODE != 0)
sql_signal ();

8–284 SQL Statements

SET FLAGS Statement

strcpy (myflags, "notransaction,noitem_list");
exec sql

execute set_flags_stmt using :myflags;
if (SQLCODE != 0)

sql_signal ();

exec sql
rollback;

if (SQLCODE != 0)
sql_signal ();

}

Example 13: Using the CHRONO_FLAG option

SQL> set flags ’chrono_fla(2),transaction’;
SQL> start transaction;
ATTACH #1, 29-NOV-2003 10:08:37.51
~T Compile transaction (1) on db: 1
~T Transaction Parameter Block: (len=2)
0000 (00000) TPB$K_VERSION = 1
0001 (00001) TPB$K_WRITE (read write)
ATTACH #1, 29-NOV-2003 10:08:37.58
~T Start_transaction (1) on db: 1, db count=1
SQL> rollback;
ATTACH #1, 29-NOV-2003 10:08:46.74
~T Rollback_transaction (1) on db: 1
SQL> rollback;
ATTACH #1, 29-NOV-2003 10:08:46.74
~T Rollback_transaction (1) on db: 1
SQL>

Example 14: Using the REBUILD_SPAM_PAGES option

When changing the row length or THRESHOLDS clause for a table or index,
the corresponding SPAM pages for the logical area may require rebuilding.
By default, these DDL commands update the AIP and set a flag to indicate
that the SPAM pages should be rebuilt. However, this flag may be set prior to
executing a COMMIT for the transaction and the rebuild will take place within
this transaction.

The following example shows a simple change to the EMPLOYEES table
(mapped in this example to set of UNIFORM areas). The flag STOMAP_
STATS is used to enable more trace information from the ALTER and COMMIT
statements.

SQL Statements 8–285

SET FLAGS Statement

SQL> set transaction read write;
SQL>
SQL> set flags ’stomap_stats’;
SQL>
SQL> alter table EMPLOYEES
cont> add column MANAGERS_COMMENTS varchar(300);
~As: reads: async 0 synch 94, writes: async 18 synch 1
SQL>
SQL> alter storage map EMPLOYEES_MAP
cont> store
cont> using (EMPLOYEE_ID)
cont> in EMPIDS_LOW
cont> (thresholds (34,76,90))
cont> with limit of (’00200’)
cont> in EMPIDS_MID
cont> (thresholds (34,76,90))
cont> with limit of (’00400’)
cont> otherwise in EMPIDS_OVER
cont> (thresholds (34,76,90));
~As locking table "EMPLOYEES" (PR -> PU)
~As: removing superseded routine EMPLOYEES_MAP
~As: creating storage mapping routine EMPLOYEES_MAP (columns=1)
~As: reads: async 0 synch 117, writes: async 56 synch 0
SQL>
SQL> set flags ’rebuild_spam_pages’;
SQL>
SQL> commit;
%RDMS-I-LOGMODVAL, modified record length to 423
%RDMS-I-LOGMODVAL, modified space management thresholds to (34%, 76%, 90%)
%RDMS-I-LOGMODVAL, modified record length to 423
%RDMS-I-LOGMODVAL, modified space management thresholds to (34%, 76%, 90%)
%RDMS-I-LOGMODVAL, modified record length to 423
%RDMS-I-LOGMODVAL, modified space management thresholds to (34%, 76%, 90%)
SQL>

The message LOGMODVAL will appear for each logical area in the storage
map, one per partition.

This rebuild action only applies to UNIFORM storage areas and may incur
significant I/O as SPAM pages and data pages are read to allow the SPAM
page to be rebuilt.

Example 15: Using the OPTIMIZATION_LEVEL flag

The following example shows how the behavior of a query changes using the
dynamic optimizer with the OPTIMIZATION_LEVEL flag set.

8–286 SQL Statements

SET FLAGS Statement

SQL> -- show with default behavior (FFirst tactic used)
SQL> select *
cont> from xtest
cont> where col2 between 999980 and 1000000
cont> and col1 > 0
cont> ;
Tables:
0 = XTEST

Leaf#01 FFirst 0:XTEST Card=10
Bool: (0.COL2 >= 999980) AND (0.COL2 <= 1000000) AND (0.COL1 > 0)
BgrNdx1 XTEST_IDX [1:0] Fan=17
Keys: 0.COL1 > 0

0 rows selected
SQL>
SQL> -- use SET FLAGS
SQL> set flags ’optimization_level(total_time)’;
SQL>
SQL> -- show that BgrOnly is used for TOTAL TIME
SQL> select *
cont> from xtest
cont> where col2 between 999980 and 1000000
cont> and col1 > 0
cont> ;
Tables:
0 = XTEST

Leaf#01 BgrOnly 0:XTEST Card=10
Bool: (0.COL2 >= 999980) AND (0.COL2 <= 1000000) AND (0.COL1 > 0)
BgrNdx1 XTEST_IDX [1:0] Fan=17
Keys: 0.COL1 > 0

0 rows selected
SQL>

Example 16: Using the ON ALIAS Clause

The default behavior for SET FLAGS is to establish the flag settings on
all currently attached databases. This clause will allow the database
administrator to set flags on just one database alias.

The following example shows a case where the enabling of AUTO_OVERRIDE
required DBADM privilege on the target database but not on the source
database. It may be that the current user does not have (or really need)
DBADM privilege on that database.

SQL> -- Now enable AUTO_OVERRIDE on only one database
SQL> set flags (on alias abc_a) ’auto_override’;
SQL> set flags (on alias abc_b) ’none’;
SQL> insert into abc_a.SAMPLE_TABLE select * from abc_b.SAMPLE_SOURCE;
SQL> commit;

SQL Statements 8–287

SET FLAGS Statement

Example 17: Using the NOREWRITE keyword

SQL> set line length 70
SQL> show flags;

Alias RDB$DBHANDLE:
Flags currently set for Oracle Rdb:

PREFIX,WARN_DDL,INDEX_COLUMN_GROUP,MAX_SOLUTION,MAX_RECURSION(100)
,REWRITE(CONTAINING),REWRITE(LIKE),REWRITE(STARTING_WITH)
,REFINE_ESTIMATES(127),NOBITMAPPED_SCAN

SQL>
SQL> set flags ’norewrite’;
SQL> show flags;

Alias RDB$DBHANDLE:
Flags currently set for Oracle Rdb:

PREFIX,WARN_DDL,INDEX_COLUMN_GROUP,MAX_SOLUTION,MAX_RECURSION(100)
,REFINE_ESTIMATES(127),NOBITMAPPED_SCAN

SQL>

8–288 SQL Statements

SET HOLD CURSORS Statement

SET HOLD CURSORS Statement

Specifies the session default attributes for holdable cursors that have not been
previously defined.

Environment

You can use the SET HOLD CURSORS statement:

• In interactive SQL

• Embedded in host language programs to be precompiled to change the
behavior of dynamic cursors

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

SET HOLD CURSORS variable
string-literal

Arguments

variable
string-literal
Specifies the attribute for the holdable cursor. Values can include:

• ON COMMIT

All cursors declared without a WITH HOLD clause or with a WITH HOLD
ON COMMIT clause remain open when you commit.

• ON ROLLBACK

All cursors declared without a WITH HOLD clause or with a WITH HOLD
ON ROLLBACK clause remain open when you roll back.

• ALL

All cursors remain open with the exception of those declared with a WITH
HOLD clause.

SQL Statements 8–289

SET HOLD CURSORS Statement

• NONE

All cursors close with the exception of those declared with a WITH HOLD
clause.

This is the default if you do not specify a SET HOLD CURSORS statement.

Usage Notes

• Cursors defined prior to the SET HOLD CURSORS statement are not
affected.

• The string-literal must be inside single quotation marks (’).

Example

Example 1: Setting session default attributes for holdable cursors

SQL> ATTACH ’FILENAME mf_personnel’;
SQL> --
SQL> -- Define the session default
SQL> --
SQL> SET HOLD CURSORS ’ON ROLLBACK’;
SQL> --
SQL> -- Declare the cursor
SQL> --
SQL> DECLARE curs1 CURSOR FOR
cont> SELECT first_name, last_name FROM employees;
SQL> OPEN curs1;
SQL> FETCH curs1;
FIRST_NAME LAST_NAME
Terry Smith
SQL> FETCH curs1;
FIRST_NAME LAST_NAME
Rick O’Sullivan
SQL> DELETE FROM employees WHERE CURRENT OF curs1;
1 row deleted
SQL> ROLLBACK;
SQL> FETCH curs1;
FIRST_NAME LAST_NAME
Stan Lasch
SQL> COMMIT;
SQL> FETCH curs1;
%SQL-F-CURNOTOPE, Cursor CURS1 is not opened

8–290 SQL Statements

SET HOLD CURSORS Statement

Example 2: Overriding the session default attributes for holdable cursors

SQL> -- Set the session default
SQL> --
SQL> SET HOLD CURSORS ’ALL’;
SQL> --
SQL> -- Declare the cursor without a WITH HOLD clause
SQL> --
SQL> DECLARE curs2 CURSOR FOR
cont> SELECT first_name, last_name FROM employees;
SQL> OPEN curs2;
SQL> FETCH curs2;
FIRST_NAME LAST_NAME
Terry Smith
SQL> FETCH curs2;
FIRST_NAME LAST_NAME
Rick O’Sullivan
SQL> ROLLBACK;
SQL> FETCH curs2;
FIRST_NAME LAST_NAME
Stan Lasch
SQL> COMMIT;
SQL> FETCH curs2;
FIRST_NAME LAST_NAME
Susan Gray
SQL> CLOSE curs2;
SQL> FETCH curs2;
%SQL-F-CURNOTOPE, Cursor CURS2 is not opened
SQL> --
SQL> -- Declare the cursor overriding the session default by
SQL> -- specifying the WITH HOLD clause
SQL> --
SQL> DECLARE curs3 CURSOR
cont> WITH HOLD PRESERVE ON COMMIT
cont> FOR SELECT first_name, last_name FROM employees;
SQL> OPEN curs3;
SQL> FETCH curs3;
FIRST_NAME LAST_NAME
Terry Smith
SQL> FETCH curs3;
FIRST_NAME LAST_NAME
Rick O’Sullivan
SQL> COMMIT;
SQL> FETCH curs3;
FIRST_NAME LAST_NAME
Stan Lasch
SQL> ROLLBACK;
SQL> FETCH curs3;
%SQL-F-CURNOTOPE, Cursor CURS3 is not opened

SQL Statements 8–291

SET IDENTIFIER CHARACTER SET Statement

SET IDENTIFIER CHARACTER SET Statement

Specifies the identifier character set for the module or interactive SQL session.

Environment

You can use the SET IDENTIFIER CHARACTER SET statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

SET IDENTIFIER CHARACTER SET runtime-options

runtime-options

’string-literal’
parameter
parameter-marker

Arguments

’string-literal’
parameter
parameter-marker
Specifies the character set used for database object names such as table names
and column names. The value of runtime-options must be a valid character
set. See Section 2.1.5 for a list of allowable character sets and option values.

Usage Notes

• The SET IDENTIFIER CHARACTER SET statement sets the identifier
character set for the session.

• The specified identifier character set must contain ASCII characters. See
Section 2.1.5 for a list of allowable character sets.

8–292 SQL Statements

SET IDENTIFIER CHARACTER SET Statement

• If you set the dialect to SQL99 or MIA, and if you do not specify the
identifier character set when you create the database, SQL uses the
session’s identifier character set. Otherwise, SQL uses DEC_MCS as the
identifier character set for the database.

• The identifier character set of the session should match the identifier
character set of all attached databases.

• The identifier character set also specifies the character set for the
SQLNAME field in SQLDA and SQLDA2 for statements without an
explicit database context.

• Use the SHOW CHARACTER SETS statement to display the current
session character sets.

For information on setting the character sets for modules in SQL module
language and precompiled SQL, see Section 3.2 and the DECLARE MODULE
Statement.

Example

Example 1: Setting the identifier character set of an interactive session

SQL> show character sets;
Default character set is DEC_KANJI
National character set is DEC_KANJI
Identifier character set is SHIFT_JIS
Literal character set is SHIFT_JIS
Display character set is SHIFT_JIS
SQL> set identifier character set ’DEC_KANJI’;
SQL> show character sets;
Default character set is DEC_KANJI
National character set is DEC_KANJI
Identifier character set is DEC_KANJI
Literal character set is SHIFT_JIS
Display character set is SHIFT_JIS

SQL Statements 8–293

SET KEYWORD RULES Statement

SET KEYWORD RULES Statement

Specifies whether or not you can use identifiers as keywords in the current
attach.

Environment

You can use the SET KEYWORD RULES statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

SET KEYWORD RULES runtime-options

runtime-options

’string-literal’
parameter
parameter-marker

Arguments

’string-literal’
parameter
parameter-marker
Specifies the value of runtime-options, which must be one of the following:

• SQL99

• SQL92

• SQL89

• MIA

• SQLV40

8–294 SQL Statements

SET KEYWORD RULES Statement

All other options force SQL to reject any keyword used as an identifier. See the
examples to see the difference in behavior.

Usage Notes

• If the SET DIALECT statement is processed after the SET KEYWORD
RULES statement, it overrides the setting of the SET KEYWORD RULES
statement.

• The SET KEYWORD RULES statement implicitly sets the quoting rules.
If the SET QUOTING RULES statement is processed after the SET
KEYWORD RULES statement, it overrides the quoting rules implicitly set
by the SET KEYWORD RULES statement.

• If the SET KEYWORD RULES statement is processed after the SET
QUOTING RULES statement, it overrides the quoting rules set by the SET
QUOTING RULES statement.

• Specifying the SET KEYWORD RULES statement changes the
keyword and quoting rules for the current attach only. Use the SHOW
CONNECTIONS statement to display the characteristics of an attach.

SQL Statements 8–295

SET KEYWORD RULES Statement

Examples

Example 1: Setting the keyword rule characteristics to SQL99

SQL> SET KEYWORD RULES ’SQL99’;
SQL> --
SQL> -- Because NATIONAL is a keyword, SQL returns an error message.
SQL> --
SQL> CREATE DOMAIN NATIONAL CHAR (2);
%SQL-F-RES_WORD_AS_IDE, Keyword NATIONAL used as an identifier
SQL> --
SQL> -- Enclose NATIONAL in double quotation marks.
SQL> --
SQL> CREATE DOMAIN "NATIONAL" CHAR (2);
SQL> --

Example 2: Setting the keyword rule characteristics to SQLV40

SQL> SET KEYWORD RULES ’SQLV40’;
SQL> --
SQL> -- You can use a keyword as an identifier.
SQL> --
SQL> CREATE DOMAIN NATIONAL CHAR (2);
%SQL-I-DEPR_FEATURE, Deprecated Feature: Keyword national used as an identifier
SQL> --

8–296 SQL Statements

SET LITERAL CHARACTER SET Statement

SET LITERAL CHARACTER SET Statement

Specifies the literal character set for the module or interactive SQL session.

Environment

You can use the SET LITERAL CHARACTER SET statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

SET LITERAL CHARACTER SET runtime-options

runtime-options

’string-literal’
parameter
parameter-marker

Arguments

’string-literal’
parameter
parameter-marker
Specifies the character set for literals that are not qualified by a character
set or national character set. The value of runtime-options must be a valid
character set. See Section 2.1 for a list of the allowable character sets and
option values.

SQL Statements 8–297

SET LITERAL CHARACTER SET Statement

Usage Notes

• The SET LITERAL CHARACTER SET statement sets the literal character
set for the session.

• If you set the dialect to MIA, the literal character set is KATAKANA.
Otherwise, if you do not set a dialect or change the literal character set,
SQL uses DEC_MCS.

• Use the SHOW CHARACTER SETS statement to display the current
session character sets.

Example

Example 1: Setting the literal character set of an interactive session

SQL> show character sets;
Default character set is DEC_KANJI
National character set is DEC_KANJI
Identifier character set is DEC_KANJI
Literal character set is SHIFT_JIS
Display character set is SHIFT_JIS
SQL> set literal character set ’DEC_KANJI’;
SQL> show character sets;
Default character set is DEC_KANJI
National character set is DEC_KANJI
Identifier character set is DEC_KANJI
Literal character set is DEC_KANJI
Display character set is SHIFT_JIS

8–298 SQL Statements

SET NAMES Statement

SET NAMES Statement

Specifies the default, identifier, and literal character sets for the session.
The SET NAMES statement also specifies the character parameters for SQL
module language.

Environment

You can use the SET NAMES statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

SET NAMES runtime-options

runtime-options

’string-literal’
parameter
parameter-marker

Arguments

’string-literal’
parameter
parameter-marker
Specifies the character set used for the default, identifier, and literal character
set for the session. The value of runtime-options must be a valid character set.
See Section 2.1.5 for a list of allowable character sets and option values.

SQL Statements 8–299

SET NAMES Statement

Usage Notes

• The SET NAMES statement sets the identifier, default, and literal
character sets for the session and overrides any previous changes. If
you want the identifier, default, or literal character set to be different than
the character set specified in the SET NAMES statement, specify it after
issuing the SET NAMES statement.

• The specified character set must contain ASCII characters. See Section
2.1.5 for a list of allowable character sets.

• The SET NAMES statement also specifies the character set for the
SQLNAME field in SQLDA and SQLDA2 for statements without an
explicit database context.

• Use the SHOW CHARACTER SETS statement to display the current
session character sets.

For information on setting the character sets for modules in SQL module
language and precompiled SQL, see Section 3.2 and the DECLARE MODULE
Statement.

8–300 SQL Statements

SET NAMES Statement

Example

Example 1: Setting the default, identifier, and literal character sets of an
interactive session

SQL> show character sets;
Default character set is DEC_MCS
National character set is DEC_MCS
Identifier character set is DEC_MCS
Literal character set is DEC_MCS
Display character set is UNSPECIFIED
SQL> --
SQL> set names ’DEC_KANJI’;
SQL> show character sets;
Default character set is DEC_KANJI
National character set is DEC_MCS
Identifier character set is DEC_KANJI
Literal character set is DEC_KANJI
Display character set is UNSPECIFIED
SQL> --
SQL> -- Specifying a different default character set
SQL> --
SQL> set default character set ’DEC_KOREAN’;
SQL> show character sets;
Default character set is DEC_KOREAN
National character set is DEC_MCS
Identifier character set is DEC_KANJI
Literal character set is DEC_KANJI
Display character set is UNSPECIFIED
SQL>

SQL Statements 8–301

SET NATIONAL CHARACTER SET Statement

SET NATIONAL CHARACTER SET Statement

Specifies the national character set for the module or interactive SQL session.

Environment

You can use the SET NATIONAL CHARACTER SET statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

SET NATIONAL CHARACTER SET runtime-options

runtime-options

’string-literal’
parameter
parameter-marker

Arguments

’string-literal’
parameter
parameter-marker
Specifies the national character set for your session. The value of runtime-
options must be a valid character set. For a list of allowable character set
names and option values, see Section 2.1.

Usage Notes

• The SET NATIONAL CHARACTER SET statement sets the national
character set for the session.

8–302 SQL Statements

SET NATIONAL CHARACTER SET Statement

• The national character set determines the character set for character
string literals qualified by the national character set, NCHAR, and NCHAR
VARYING. Section 2.1 lists the character sets you can use for the national
character set for the database.

• If you have set the dialect to SQL99 or MIA, and if you do not specify
the national character set when you create the database, SQL uses the
session’s national character set. Otherwise, SQL uses DEC_MCS as the
national character set.

• Use the SHOW CHARACTER SETS statement to display the current
session character sets.

For information on setting the character sets for modules in SQL module
language and precompiled SQL, see Section 3.2 and the DECLARE MODULE
Statement.

Example

Example 1: Setting the national character set for an interactive session

SQL> show character sets;
Default character set is DEC_KANJI
National character set is DEC_MCS
Identifier character set is SHIFT_JIS
Literal character set is SHIFT_JIS
Display character set is SHIFT_JIS
SQL> set national character set ’DEC_KANJI’;
SQL> show character sets;
Default character set is DEC_KANJI
National character set is DEC_KANJI
Identifier character set is SHIFT_JIS
Literal character set is SHIFT_JIS
Display character set is SHIFT_JIS

SQL Statements 8–303

SET OPTIMIZATION LEVEL Statement

SET OPTIMIZATION LEVEL Statement

Allows the current session defaults to be specified for query optimization
characteristics.

This statement can reset the session defaults using DEFAULT, or can specify
one or more keywords for SELECTIVITY or FAST FIRST or TOTAL TIME
optimization.

This statement affects all subsequent query compiles in interactive SQL, or
queries specified using dynamic SQL.

See Chapter 3 and Chapter 4 for information on setting the optimization level
in SQL module and precompiler languages.

Environment

You can use the SET OPTIMIZATION LEVEL statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• In dynamic SQL as a statement to be dynamically executed

Format

SET OPTIMIZATION LEVEL runtime-options

runtime-options

’string-literal’
parameter
parameter-marker

optimization-level=
DEFAULT

AGGRESSIVE SELECTIVITY
FAST FIRST
SAMPLED SELECTIVITY
TOTAL TIME

,

8–304 SQL Statements

SET OPTIMIZATION LEVEL Statement

Arguments

optimization-level
Specifies the optimizer strategy to be used to reset session defaults. The passed
string or parameter value must be a formatted list of keyword values. Select
from the following options:

• AGGRESSIVE SELECTIVITY option if you expect a small number of rows
to be selected.

• DEFAULT option to accept the Oracle Rdb defaults: FAST FIRST and
DEFAULT SELECTIVITY.

• FAST FIRST option if you want your program to return data to the user as
quickly as possible, even at the expense of total throughput.

• SAMPLED SELECTIVITY option to use literals in the query to perform
preliminary estimation on indexes.

• TOTAL TIME option if you want your program to run at the fastest
possible rate, returning all the data as quickly as possible. If your
application runs in batch, accesses all the records in a query, and performs
updates or writes reports, you should specify TOTAL TIME.

Only one of the TOTAL TIME or FAST FIRST options can be selected. Only
one of the AGGRESSIVE SELECTIVITY or SAMPLED SELECTIVITY options
can be selected. Use a comma to separate the keywords and enclose the list in
parentheses. No other options may be included if DEFAULT is selected.

’string-literal’
parameter
parameter-marker
Specifies the value of the runtime-options, which must be a list of keywords,
separated by commas.

Usage Notes

• You can set the most commonly used optimization level in your
initialization procedure (the SQLINI.SQL procedure that is automatically
executed in the beginning of each session).

• You can change the optimization level default for a particular query (not
just for cursors as with previous versions of Oracle Rdb) by specifying
an OPTIMIZE clause in the UPDATE, INSERT, DELETE, or SELECT
statement.

SQL Statements 8–305

SET OPTIMIZATION LEVEL Statement

• Any query that explicitly includes an OPTIMIZE WITH or OPTIMIZE
FOR clause is not affected by the settings established using the SET
OPTIMIZATION LEVEL command.

Example

Example 1: Setting the optimization level

The dynamic optimizer can use either FAST FIRST or TOTAL TIME tactics to
return rows to the application. The default setting, FAST FIRST, assumes that
applications, especially those using interactive SQL, will want to see rows as
quickly as possible and possibly abort the query before completion. Therefore,
if the FAST FIRST tactic is possible the optimizer will sacrifice overall retrieval
time to initially return rows quickly. This choice can be affected by setting the
OPTIMIZATION LEVEL.

The following example contrasts the query strategies selected when FAST
FIRST versus TOTAL TIME is in effect. Databases and queries will vary in
their requirements. Queries should be tuned to see which setting best suits
the needs of the application environment. For the MF_PERSONNEL database
there is little or no difference between these tactics, but for larger tables the
differences could be noticeable.

SQL> set flags ’STRATEGY,DETAIL’;
SQL> --
SQL> -- No optimization level has been selected. The optimizer
SQL> -- selects the FAST FIRST (FFirst) retrieval tactic to
SQL> -- retrieve the rows from the EMPLOYEES table in the
SQL> -- following query:
SQL> --
SQL> select EMPLOYEE_ID, LAST_NAME
cont> from EMPLOYEES
cont> where EMPLOYEE_ID IN (’00167’, ’00168’);
Tables:
0 = EMPLOYEES

Leaf#01 FFirst 0:EMPLOYEES Card=100
Bool: (0.EMPLOYEE_ID = ’00167’) OR (0.EMPLOYEE_ID = ’00168’)
BgrNdx1 EMPLOYEES_HASH [(1:1)2] Fan=1
Keys: r0: 0.EMPLOYEE_ID = ’00168’

r1: 0.EMPLOYEE_ID = ’00167’
EMPLOYEE_ID LAST_NAME
00167 Kilpatrick
00168 Nash
2 rows selected
SQL> --
SQL> -- Use the SET OPTIMIZATION LEVEL statement to specify that
SQL> -- you want the TOTAL TIME (BgrOnly) retrieval strategy to
SQL> -- be used.
SQL> --

8–306 SQL Statements

SET OPTIMIZATION LEVEL Statement

SQL> SET OPTIMIZATION LEVEL ’TOTAL TIME’;
SQL> select EMPLOYEE_ID, LAST_NAME
cont> from EMPLOYEES
cont> where EMPLOYEE_ID IN (’00167’, ’00168’);
Tables:
0 = EMPLOYEES

Leaf#01 BgrOnly 0:EMPLOYEES Card=100
Bool: (0.EMPLOYEE_ID = ’00167’) OR (0.EMPLOYEE_ID = ’00168’)
BgrNdx1 EMPLOYEES_HASH [(1:1)2] Fan=1
Keys: r0: 0.EMPLOYEE_ID = ’00168’

r1: 0.EMPLOYEE_ID = ’00167’
EMPLOYEE_ID LAST_NAME
00167 Kilpatrick
00168 Nash
2 rows selected
SQL> --
SQL> -- When the SET OPTIMIZATION LEVEL ’DEFAULT’ statement
SQL> -- is specified the session will revert to the default FAST FIRST
SQL> -- optimizer tactic.
SQL> --
SQL> SET OPTIMIZATION LEVEL ’DEFAULT’;
SQL> select EMPLOYEE_ID, LAST_NAME
cont> from EMPLOYEES
cont> where EMPLOYEE_ID IN (’00167’, ’00168’);
Tables:
0 = EMPLOYEES

Leaf#01 FFirst 0:EMPLOYEES Card=100
Bool: (0.EMPLOYEE_ID = ’00167’) OR (0.EMPLOYEE_ID = ’00168’)
BgrNdx1 EMPLOYEES_HASH [(1:1)2] Fan=1
Keys: r0: 0.EMPLOYEE_ID = ’00168’

r1: 0.EMPLOYEE_ID = ’00167’
EMPLOYEE_ID LAST_NAME
00167 Kilpatrick
00168 Nash
2 rows selected
SQL>

Example 2: Using sampled selectivity

This example shows the use of the SET OPTIMIZATION LEVEL command
and the resulting use of "Estim" prior to query compile. The estimate (34 rows)
is quite close to the final result of 37 rows.

SQL Statements 8–307

SET OPTIMIZATION LEVEL Statement

SQL> set flags ’strategy,detail,execution’;
SQL> set optimization level ’total time, sampled selectivity’;
SQL> select * from employees where employee_id between ’00000’ and ’00200’;
~Estim EMP_EMPLOYEE_ID Sorted: Split lev=2, Seps=2 Est=34
~Estim EMP_EMPLOYEE_ID Sorted: Split lev=2, Seps=2 Est=34
~S#0005
Tables:

0 = EMPLOYEES
Leaf#01 BgrOnly 0:EMPLOYEES Card=100
Bool: (0.EMPLOYEE_ID >= ’00000’ AND (0.EMPLOYEE_ID <= ’00200’)
BgrNdx1 EMP_EMPLOYEE_ID [1:1] Fan=17
Keys: (0:EMPLOYEE_ID >= ’00000’) AND 0.EMPLOYEE_ID <= ’00200’)

~Estim EMP_EMPLOYEE_ID Sorted: Split lev=2, Seps=1 Est=17
~E#0005.01(1) Estim Index/Estimate 1/17
~E#0005.01(1) Bgrndx1 EofData DBKeys=37 Fetches=0+0 RecsOut=0 #Bufs=30
EMPLOYEE_ID LAST_NAME FIRST_NAME MIDDLE_INITIAL ADDRESS_DATA1 ADRESS_DATA_2
CITY STATE POSTAL_CODE SEX BIRTHDAY STATUS_CODE

00190 O’Sullivan Rick G. 78 Mason Rd. NULL
Fremont NH 03044 M 12-Jan-1923 1
.
.
.

~E#005.01(1) Fin Buf DBKeys=37 Fetches=0+32 RecsOut=37
00174 Myotte Daniel V. 95 Princeton Rd. NULL
Bennington MA 03442 M 17-Jan-1948 1

37 rows selected
SQL>

8–308 SQL Statements

SET QUIET COMMIT Statement

SET QUIET COMMIT Statement

Allows you to control the error reporting behavior when a COMMIT or
ROLLBACK statement is executed although there is no active transaction.
By default, if there is no active transaction, SQL raises an error when a
COMMIT or ROLLBACK statement is executed. If the SET QUIET COMMIT
statement is set to ON, then a COMMIT or ROLLBACK statement executes
successfully even when there is no active transaction.

Environment

You can use the SET QUIET COMMIT statement:

• In interactive SQL

• In dynamic SQL as a statement to be dynamically executed

Format

SET QUIET COMMIT on-or-off-value

Argument

on-or-off-value
Specifies a string literal or host variable containing the keyword ON or OFF.

The ’ON’ argument specifies that if a COMMIT or ROLLBACK statement is
executed when there is no active transaction, then SQL will not raise an error.
The ’OFF’ argument specifies that if a COMMIT or ROLLBACK statement
is executed when there is no active transaction, then SQL will raise an error.
You can specify the ’ON’ and ’OFF’ arguments using any case (uppercase,
lowercase, or mixed case).

By default, if there is no active transaction, SQL raises an error when the
COMMIT or ROLLBACK statement is executed. This default is retained for
backward compatibility for applications that want to detect this situation.

SQL Statements 8–309

SET QUIET COMMIT Statement

Usage Notes

• The following options and qualifiers have the same effect as the SET
QUIET COMMIT statement in their respective interfaces:

QUIET COMMIT clause for the SQL module language header option

/QUIET_COMMIT and /NOQUIET_COMMIT qualifiers for the SQL
module language qualifier

/SQLOPTIONS=QUIET_COMMIT and /SQLOPTIONS=NOQUIET_
COMMIT qualifiers for the SQL language precompiler

• If you issue a COMMIT or ROLLBACK statement within a compound
statement, stored procedure, or function, no exception is ever raised when
a transaction is not active and you have not issued the SET QUIET
COMMIT statement. In effect, the behavior of the SET QUIET COMMIT
statement is always active for compound statements, stored procedures,
and functions.

Example

Example 1: Setting the QUIET COMMIT Option On and Off

SQL> COMMIT;
%SQL-F-NO_TXNOUT, No transaction outstanding
SQL> SET QUIET COMMIT ’ON’;
SQL> ROLLBACK;
SQL> SET QUIET COMMIT ’OFF’;
SQL> ROLLBACK;
%SQL-F-NO_TXNOUT, No transaction outstanding

8–310 SQL Statements

SET QUOTING RULES Statement

SET QUOTING RULES Statement

Specifies whether strings within double quotation marks are interpreted as
string literals or delimited identifiers in the current connection.

Environment

You can use the SET QUOTING RULES statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

SET QUOTING RULES runtime-options

runtime-options

’string-literal’
parameter
parameter-marker

Arguments

’string-literal’
parameter
parameter-marker
Specifies the value of the runtime-options, which must be one of the following:

• SQL99

• SQL92

• SQL89

• MIA

• SQLV40

SQL Statements 8–311

SET QUOTING RULES Statement

SQL99
SQL92
SQL89
MIA
Specifies that SQL interprets strings within double quotation marks as
delimited identifiers. Delimited identifiers are case sensitive.

To comply with the ANSI/ISO SQL standard naming conventions, you should
use one of these options. In addition, you must use one of these options to use
multischema database naming.

SQLV40
Specifies that SQL interprets strings within double quotation marks as string
literals.

The default is SQLV40.

Usage Notes

• If the SET DIALECT statement is processed after the SET QUOTING
RULES statement, it can override the setting of the SET QUOTING
RULES statement.

• If the SET KEYWORD RULES statement is processed after the SET
QUOTING RULES statement, it can override the setting of the SET
QUOTING RULES statement.

• Specifying the SET QUOTING RULES statement changes the quoting
rules for the current connection only. Use the SHOW CONNECTIONS
statement to display the characteristics of a connection.

8–312 SQL Statements

SET QUOTING RULES Statement

Examples

Example 1: Setting the quoting rules to SQL99

SQL> SET QUOTING RULES ’SQL99’;
SQL> --
SQL> -- SQL interprets double quotation marks as delimited identifiers.
SQL> --
SQL> CREATE TABLE "Employees_Table"
cont> ("Employee_ID" CHAR(6),
cont> "Employee_Name" CHAR (30));
SQL> --
SQL> -- SQL retains the upper- and lowercase letters within the identifier.
SQL> --
SQL> SHOW TABLE EMPLOYEES_TABLE
No tables found
SQL> SHOW TABLE "Employees_Table"
Information for table Employees_Table

Columns for table Employees_Table:
Column Name Data Type Domain
----------- --------- ------
Employee_ID CHAR(6)
Employee_Name CHAR(30)

.

.

.

SQL Statements 8–313

SET QUOTING RULES Statement

Example 2: Setting the quoting rules to SQLV40

SQL> SET QUOTING RULES ’SQLV40’;
SQL> --
SQL> -- When you set the quoting rules to SQLV40, SQL interprets double
SQL> -- quotation marks as string literals.
SQL> --
SQL> CREATE TABLE "Employees_Table"
%SQL-I-DEPR_FEATURE, Deprecated Feature: " used instead of ’ for string
literal
CREATE TABLE "Employees_Table"

^
%SQL-W-LOOK_FOR_STT, Syntax error, looking for:
%SQL-W-LOOK_FOR_CON, name, FROM,
%SQL-F-LOOK_FOR_FIN, found Employees_Table instead
SQL> --
SQL> -- Although you can use double quotation marks for string literals, SQL
SQL> -- returns a deprecated feature message.
SQL> --
SQL> INSERT INTO EMPLOYEES
cont> (EMPLOYEE_ID, LAST_NAME, STATUS_CODE)
cont> VALUES
cont> ("00500", ’Toliver’, ’1’);
%SQL-I-DEPR_FEATURE, Deprecated Feature: " used instead of ’ for string
literal
1 row inserted
SQL> --

8–314 SQL Statements

SET SCHEMA Statement

SET SCHEMA Statement

Specifies the default schema name for an SQL user session in dynamically
prepared and executed or interactive SQL statements until another SET
SCHEMA statement is issued.

Within one multischema database, tables in different schemas can be used in a
single SQL statement; tables in schemas in different databases cannot. If you
omit the schema name when you specify an object in a multischema database,
SQL uses the default schema name.

Environment

You can use the SET SCHEMA statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

SET SCHEMA schema-string-literal
<schema-parameter>
<schema-parameter-marker>

schema-string-literal =

’ schema-expression ’

schema-expression =

<catalog-name> .
" <alias>.<catalog-name> "

<name-of-schema>
" <alias>.<name-of-schema> "

SQL Statements 8–315

SET SCHEMA Statement

Arguments

schema-expression
Specifies the name of the default schema for a multischema database. If you
omit the schema name when you specify an object in a multischema database,
SQL uses the default schema name. If you do not specify a default schema
name, the default uses the user name of the current user.

See Section 2.2.15 for more information on schemas.

schema-parameter
Specifies a host language variable in precompiled SQL or a formal parameter
in an SQL module language procedure that specifies the default schema. The
schema parameter must contain a schema expression.

schema-parameter-marker
Specifies a parameter marker (?) in a dynamic SQL statement. The schema
parameter marker refers to a parameter that specifies the default schema. The
schema parameter marker must specify a parameter that contains a schema
expression.

schema-string-literal
Specifies a character string literal that specifies the default schema. The
schema string literal must contain a schema expression enclosed within single
quotation marks.

Usage Notes

• SQL does not issue an error message when you use SET SCHEMA to set
default to a schema that does not exist. However, when you refer to that
schema by specifying an unqualified name, SQL issues the error message
shown in the following example:

8–316 SQL Statements

SET SCHEMA Statement

SQL> ATTACH ’ALIAS CORP FILENAME corporate_data’;
SQL> SHOW CATALOGS
Catalogs in database CORP

"CORP.ADMINISTRATION"
"CORP.RDB$CATALOG"

SQL> SHOW SCHEMAS
Schemas in database with filename corporate_data

ACCOUNTING
PERSONNEL
RECRUITING
RDB$CATALOG.RDB$SCHEMA

SQL> SET SCHEMA ’"CORP.ADMINISTRATION".BOGUS’;
SQL> CREATE TABLE NEWTABLE (COL1 REAL);
%SQL-F-SCHNOTDEF, Schema BOGUS is not defined

Remember that the double-quoted leftmost pair (the delimited identifier)
in a multischema object name requires uppercase characters. For other
multischema naming rules, see Section 2.2.11. You will receive the
following error message if you specify a delimited identifier in lowercase
characters:

SQL> set schema ’"corp.administration".accounting’;
SQL> CREATE TABLE NEWTABLE (COL1 REAL);
%SQL-F-NODEFDB, There is no default database
SQL> set schema ’"CORP.ADMINISTRATION".accounting’;
SQL> CREATE TABLE NEWTABLE (COL1 REAL);
SQL>

• You cannot use the SET SCHEMA statement for nondynamic statements.

Example

Example 1: Setting schema and catalog defaults to create a table in a
multischema database

In this example, user ELLINGSWORTH attaches to two databases: the default
database, personnel, and the multischema corporate_data database with alias
CORP. User ELLINGSWORTH attempts to create a table in the corporate_
data database, and receives an error message because the default schema is
ELLINGSWORTH, which has not been created in the default catalog. User
ELLINGSWORTH uses SET SCHEMA and SET CATALOG statements to
change the defaults to catalog ADMINISTRATION and schema ACCOUNTING
of the corporate_data database.

SQL Statements 8–317

SET SCHEMA Statement

Use the SHOW DATABASE statement to see the database settings.

SQL> ATTACH ’FILENAME personnel’;
SQL> ATTACH ’ALIAS CORP FILENAME corporate_data’;
SQL> SHOW SCHEMAS;
Schemas in database with filename personnel
No schemas found
Schemas in database CORP

"CORP.ADMINISTRATION".ACCOUNTING
"CORP.ADMINISTRATION".PERSONNEL
"CORP.ADMINISTRATION".RECRUITING
"CORP.RDB$CATALOG".RDB$SCHEMA

SQL> CREATE TABLE CORP.BUDGET (COL1 REAL);
%SQL-F-SCHNOTDEF, Schema "CORP.RDB$CATALOG".CORP is not defined
SQL> --
SQL> -- SQL interprets CORP as schema name, and there is no
SQL> -- CORP schema in the default database.
SQL> --
SQL> -- Add quotation marks to designate qualifier CORP as an alias,
SQL> -- not the schema name.
SQL> --
SQL> SET QUOTING RULES ’SQL92’;
SQL> CREATE TABLE "CORP.BUDGET" (COL1 REAL);
%SQL-F-SCHNOTDEF, Schema "CORP.RDB$CATALOG".ELLINGSWORTH is not defined
SQL> --
SQL> -- The default schema in the database with alias CORP
SQL> -- is the user name ELLINGSWORTH, but there is no
SQL> -- schema named ELLINGSWORTH.
SQL> --
SQL> -- Set the default schema to ACCOUNTING, and qualify it
SQL> -- with a delimited identifier containing the alias CORP and
SQL> -- the catalog ADMINISTRATION. Now you can create the
SQL> -- table BUDGET within schema ACCOUNTING without qualifying
SQL> -- the table name.
SQL> --
SQL> SET SCHEMA ’"CORP.ADMINISTRATION".ACCOUNTING’;
SQL> CREATE TABLE BUDGET (COL1 REAL);
SQL> SHOW TABLES;
User tables in database with filename personnel

CANDIDATES
COLLEGES
.
.
.
User tables in database with alias CORP
"CORP.ADMINISTRATION".ACCOUNTING.BUDGET
.
.
.

8–318 SQL Statements

SET SESSION AUTHORIZATION Statement

SET SESSION AUTHORIZATION Statement

Allows you to transfer the current database attach to another user.

Environment

You can use the SET SESSION AUTHORIZATION statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

SET SESSION AUTHORIZATION host-variable
’literal-user-auth’

literal-user-auth =

USER ’<username>’
USING ’<password>’

Arguments

host-variable
’literal-user-auth’
Specifies the name of the user and the password to whom the database attach
is being transferred as a string literal or a host variable. If a host-variable is
specified, it must contain the literal-user-auth as a string literal.

USER ’username’
A character string literal that specifies the operating system user name that
the database system uses for privilege checking.

USING ’password’
A character string literal that specifies the user’s password for the user name
specified in the USER clause.

SQL Statements 8–319

SET SESSION AUTHORIZATION Statement

Usage Notes

• You must have the SELECT privilege on the database to set session
authorization.

• The specified user and password (in the USING clause) must be a valid
OpenVMS user authorization.

• If the operation is successful, the SESSION_USER and SESSION_UID will
be changed to reflect the specified OpenVMS user.

• No transaction can be active when the session authorization is modified by
this statement.

Examples

Example 1: Reusing the Current Database Attach for Another User

SQL> ATTACH ’FILENAME db$:personnel’;
SQL> SET SESSION AUTHORIZATION ’USER ’’SMITH’’ USING ’’SECRET1’’’;
SQL> SHOW PRIV ON DATABASE RDB$DBHANDLE
Privileges on Alias RDB$DBHANDLE

(IDENTIFIER =[RDB,SMITH],ACCESS=SELECT+INSERT+UPDATE+DELETE+SHOW+CREATE+
ALTER+DROP+DBCTRL+OPERATOR+DBADM+REFERENCES+SECURITY+DISTRIBTRAN)

SQL> SET SESSION AUTHORIZATION ’USER ’’JAIN’’ USING ’’SECRET2’’’;
SQL> SHOW PRIV ON DATABASE RDB$DBHANDLE
Privileges on Alias RDB$DBHANDLE

(IDENTIFIER =[RDB,JAIN],ACCESS=SELECT+INSERT+UPDATE+DELETE+SHOW+CREATE+
ALTER+DROP+DBCTRL+OPERATOR+DBADM+REFERENCES+SECURITY+DISTRIBTRAN)

8–320 SQL Statements

SET SQLDA Statement

SET SQLDA Statement

Allows a programmer using Dynamic SQL to alter the way the SQLDA (and
SQLDA2) and Dynamic SQL statements are processed by Oracle Rdb.

Environment

You can use the SET SQLDA statement:

• In Dynamic SQL as a statement to be dynamically executed

Format

SET SQLDA literal
host-variable

sqlda_options =

sqlda_option
,

sqlda_option =

PADDING n CHARACTERS
NOPADDING
ENABLE enable-option
DISABLE enable-option
dialect-name

enable-option =

INSERT RETURNING
NAMED MARKERS
ROWID TYPE

dialect-name =

SQL99
SQL92
SQL89
MIA
SQLV40
ORACLE LEVEL1
ORACLE LEVEL2

SQL Statements 8–321

SET SQLDA Statement

Arguments

Literal
Host-Variable
Parameter passed to the statement. Must be a literal or a host variable
containing one or more SQLDA options (see sqlda_options syntax diagram
for details). If more than one option is specified, they must be separated by
commas.

sqlda_options
One or more keyword clauses. If more than one clause is specified, they must
be separated by commas.

ENABLE
The ENABLE clause activates one of the following behaviors for Dynamic SQL.

INSERT RETURNING - The default behavior of INSERT ... RETURNING
when executed by dynamic SQL is to place parameters from the
RETURNING INTO clause in to the INPUT SQLDA. This behavior is
maintained for backward compatibility. This option allows the programmer
to force different (and corrected) behavior for the non-compound use of this
statement.

Note

If the INSERT RETURNING statement is included in a compound
statement then the parameters are handled correctly.

NAMED MARKERS - as well as traditional parameters markers (?).
Dynamic SQL will now accept named, host-variable style parameter
markers. See the Usage Notes for further details and examples.

ROWID TYPE - returns DBKEY values as a special type (SQLDA_ROWID,
455) to make processing of the DBKEY values easier. For instance, in prior
releases the SQLDA name field (SQLNAME) for DBKEY entries in the
SQLDA was the only way to distinguish these values from other CHAR
or VARCHAR columns - it would be either DBKEY or ROWID. If a query
renamed the DBKEY column, then the application had no information in
the SQLDA to indicate that the CHAR or VARCHAR value was binary
data. In all respects, the SQLDA_ROWID type appears as a fixed length
string of octets (possibly containing octets of zero which the C language
would treat as a NULL terminator for a string).

8–322 SQL Statements

SET SQLDA Statement

DISABLE
The DISABLE clause deactivates one of the specified behaviors for Dynamic
SQL. See ENABLE clause for a list of options.

ORACLE LEVEL1
ORACLE LEVEL2
Either of these options will set the SQLDA to supply enhanced semantics.
These options are currently reserved for the use of the OCI Services for Rdb
product that is part of Oracle Rdb SQL/Services component. This setting also
implicitly enables NAMED MARKERS.

PADDING n CHARACTERS
This option directs SQL to configure the SQLDA with larger CHARACTER
VARYING strings than would normally be seen. The value of n is an unsigned
numeric literal that specifies the number of characters that are added to
the estimated length. Any CHARACTER (CHAR) types are converted to
CHARACTER VARYING (VARCHAR). This rule is applied to comparison
operators <, <=, >, >=, =, <>, and string functions (STARTING WITH,
CONTAINING).

NOPADDING
This option sets the number of padding characters to 0. This also implies
that derived CHARACTER (CHAR) types are not converted to CHARACTER
VARYING (VARCHAR) when PADDING CHARACTERS is used. This is the
default setting.

Note

Oracle recommends that applications always check for SQLDA_CHAR
and SQLDA_VARCHAR so that the correctly formatted data is made
available to SQL.

SQL99
SQL92
MIA
SQL89
SQLV40
Any of these options will revert to the default semantic for the SQLDA which
includes disabling NAMED MARKERS.

SQL Statements 8–323

SET SQLDA Statement

Usage Notes

• The ORACLE LEVEL1 and ORACLE LEVEL2 settings are reserved for
use by Oracle Corporation. Current behavior of this setting may change
with any given release based on requirements of the OCI Services for
Rdb component. This setting changes the usage of various SQLDA and
SQLDA2 fields.

• Keywords may not be abbreviated and the clauses must be fully specified.

• The SET DIALECT command will implicitly enable NAMED MARKERS if
the dialect is changed to either ORACLE LEVEL1 or ORACLE LEVEL2.

• The SET DIALECT command will implicitly disable NAMED MARKERS
if the dialect is changed to any dialect other than ORACLE LEVEL1 or
ORACLE LEVEL2.

• When NAMED MARKERS are enabled the contents of the SQLDA and
SQLDA2 will reflect one entry for each name. When traditional parameter
markers are used a SQLDA (or SQLDA2) entry will exist for each marker
(?) encountered. This change in behavior can simplify the query encoding
as well lead to more efficient strategy creation.

Example

Example 1: Using the NAMED MARKERS feature

This example shows that enabling the NAMED MARKERS feature will allow
SQL to prompt for one value and the displayed Rdb strategy shows that only
one variable is used.

-> SET SQLDA ’ENABLE NAMED MARKERS’;
-> SELECT LAST_NAME FROM EMPLOYEES WHERE FIRST_NAME = :F_NAME AND LAST_NAME <>
:F_NAME;
in: [0] typ=449 len=46
out: [0] typ=453 len=14
[SQLDA - reading 1 fields]
-> Alvin
Tables:
0 = EMPLOYEES

Conjunct: (0.FIRST_NAME = <var0>) AND (0.LAST_NAME <> <var0>)
Get Retrieval sequentially of relation 0:EMPLOYEES
0/FIRST_NAME/Varchar(42/46): Alvin
[SQLDA - displaying 1 fields]
0/LAST_NAME: Toliver
[SQLDA - displaying 1 fields]
0/LAST_NAME: Dement

8–324 SQL Statements

SET SQLDA Statement

Example 2: Using the PADDING feature

The following example shows that the derived type for the named parameter
MI is a SQLDA_CHAR (453) of length 1. The input data (’AA’) is truncated on
assignment and the incorrect results are returned. By adding a small padding
the type is changed to SQLDA_VARCHAR (449) of length 3 and a correct
comparison is performed.

-> ATTACH ’filename sql$database’;
-> SET SQLDA ’enable named markers, nopadding’;
-> SELECT LAST_NAME FROM EMPLOYEES WHERE MIDDLE_INITIAL = :MI;
in: [0] typ=453 len=1
out: [0] typ=449 len=18
[SQLDA - reading 1 fields]
-> AA
[SQLDA - displaying 1 fields]
0/LAST_NAME: Toliver
[SQLDA - displaying 1 fields]
0/LAST_NAME: Lengyel
[SQLDA - displaying 1 fields]
0/LAST_NAME: Robinson
[SQLDA - displaying 1 fields]
0/LAST_NAME: Ames
-> SET SQLDA ’padding 2 characters’;
-> SELECT LAST_NAME FROM EMPLOYEES WHERE MIDDLE_INITIAL = :MI;
in: [0] typ=449 len=7
out: [0] typ=449 len=18
[SQLDA - reading 1 fields]
-> AA
-> EXIT;
Enter statement:

Note that the VARCHAR requires an extra 4 bytes for the length information
in the SQLDA2 used by the Dynamic SQL testing program.

SQL Statements 8–325

SET TRANSACTION Statement

SET TRANSACTION Statement

Starts a transaction and specifies its characteristics. A transaction is a group
of statements whose changes can be made permanent or undone only as a unit.

A transaction ends with a COMMIT or ROLLBACK statement. If you end the
transaction with the COMMIT statement, all the changes made to the database
by the statements are made permanent. If you end the transaction with the
ROLLBACK statement, the statements do not take effect.

You must end the transaction with a COMMIT or ROLLBACK statement
before starting or declaring another transaction. If you try to start or declare a
transaction while another one is active, SQL generates an error message.

Besides the SET TRANSACTION statement, you can specify the characteristics
of a transaction in one of two other ways:

• If you specify the DECLARE TRANSACTION statement, the declarations
in the statement take effect when SQL starts a new transaction that
is not started by the SET TRANSACTION statement. SQL starts a
new transaction with the first executable data manipulation or data
definition statement following the DECLARE TRANSACTION, COMMIT,
or ROLLBACK statement.

• If you omit both the DECLARE and SET TRANSACTION statements, SQL
automatically starts a transaction (using the read/write option) with the
first executable data manipulation or data definition statement following
a COMMIT or ROLLBACK statement. Thus, you can retrieve and update
data without declaring or setting a transaction explicitly.

See the Usage Notes for examples of when you would want to use the
DECLARE TRANSACTION statement instead of the SET TRANSACTION
statement.

You can specify many options with the SET TRANSACTION statement,
including:

• Transaction mode (READ ONLY/READ WRITE)

• Lock specification clause (RESERVING options)

• Horizontal partition specification (RESERVING options)

• Wait mode (WAIT/NOWAIT)

• Isolation level

• Constraint evaluation specification clause

8–326 SQL Statements

SET TRANSACTION Statement

• Multiple sets of all the preceding options for each database involved in the
transaction (ON . . . AND ON)

The Arguments section explains these options in more detail.

Environment

You can use the SET TRANSACTION statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

SET TRANSACTION
tx-options
db-txns

tx-options =

NAME ’quoted-string’
EVALUATING evaluating-clause

,
RESERVING reserving-clause

,
isolation-level
transaction-mode
wait-option

,

transaction-mode =

READ ONLY
READ WRITE
BATCH UPDATE

wait-option =
WAIT

<timeout-value>
NOWAIT

SQL Statements 8–327

SET TRANSACTION Statement

isolation-level =

ISOLATION LEVEL READ COMMITTED
REPEATABLE READ
SERIALIZABLE

evaluating-clause =

<constraint-name> AT VERB TIME
<alias.> COMMIT TIME

reserving-clause =

<view-name>
<table-name>

PARTITION (<part-num>)
,

,

FOR READ
EXCLUSIVE WRITE
PROTECTED DATA DEFINITION
SHARED

db-txns =

ON <alias> USING (tx-options)
, DEFAULTS

AND

Arguments

alias
Specifies the alias for a constraint. See the Usage Notes for information on
using aliases for a multischema database.

BATCH UPDATE
Specifies the batch-update mode to reduce overhead in large-load operations.
To speed update operations, Oracle Rdb does not write to snapshot or recovery-
unit journal files in a batch-update transaction. For more information about
batch-update transactions, see the Oracle Rdb Guide to SQL Programming.

8–328 SQL Statements

SET TRANSACTION Statement

The batch-update transaction permits updates to the database without creating
a recovery-unit journal (.ruj) file. Therefore, any rows or indices modified
during the transaction cannot be rolled back because Oracle Rdb does not
maintain before-images of the changed records.

For example, if you need a large test database for development purposes,
a batch-update transaction loads the database but bypasses the journaling
facilities. If the load fails, you must create the database again.

Because you cannot use batch-update transactions with distributed
transactions, you should define the SQL$DISABLE_CONTEXT logical name as
‘‘True’’ before you start a batch-update transaction. (Distributed transactions
require that you are able to roll back transactions.)

A batch-update transaction started on a database cannot include additional
arguments. However, other databases referred to in the same transaction
declaration can include other arguments.

For example, the following statement is valid:

SQL> SET TRANSACTION ON OLD_DB USING (READ ONLY)
cont> AND ON NEW_DB USING (BATCH UPDATE);

Caution

Before you begin a batch-update transaction in your programs, you
should create a backup copy of the database using the RMU Backup
command. If an error occurs in your program that would normally
result in a rollback of the transaction, Oracle Rdb marks the database
as corrupt. To recover from a corrupt database, you must create the
database again from the backup copy of the database. After correcting
the error condition, you can restart the program from the beginning.
You should back up the database after completing a batch-update
transaction as well.

constraint-name
Specifies the name of a constraint.

db-txns
Specifies different transaction options. When you attach to more than one
database and want to specify different transaction options for each database,
use this clause.

SQL Statements 8–329

SET TRANSACTION Statement

evaluating-clause
Specifies the point at which the named constraint or constraints are evaluated.
If you specify VERB TIME, they are evaluated when the data manipulation
statement is issued. If you specify COMMIT TIME, the constraint evaluation is
based on the setting of the SET ALL CONSTRAINTS statement. For read-only
transactions, this clause is allowed but is ignored.

FOR EXCLUSIVE
FOR PROTECTED
FOR SHARED
Specifies the SQL share modes. The keyword you choose determines which
operations you allow others to perform on the tables you are reserving. While
you can specify an EXCLUSIVE or PROTECTED share mode when declaring a
read-only transaction, SQL ignores these entries and specifies SHARED mode.
The default is SHARED. Table 8–7 describes the different share modes.

Table 8–7 SQL Share Modes

Option Access Constraints

SHARED
(Default)

Other users also can work with the same tables. Depending on
the option they choose, they can have read-only or read/write
access to the tables.

PROTECTED Other users can read the tables you are using. They cannot
have write access.

EXCLUSIVE Other users cannot read records from the tables included in
your transaction. If another user refers to the same tables in
a DECLARE TRANSACTION statement, SQL denies access to
that user.

Under some circumstances, the base database system may promote a shared
reservation to protected or exclusive during query processing.

Table 8–8 compares the effect of different lock specifications.

8–330 SQL Statements

SET TRANSACTION Statement

Table 8–8 Comparison of Row Locking for Updates

Lock Specification
SHARED
WRITE

PROTECTED
WRITE

EXCLUSIVE
WRITE

BATCH
UPDATE

Writes to .ruj? Yes Yes Yes No
Writes to .snp? Yes Yes No No
Recovery? Yes Yes Yes No
Multiuser access? Yes Yes No No

ISOLATION LEVEL READ COMMITTED
ISOLATION LEVEL REPEATABLE READ
ISOLATION LEVEL SERIALIZABLE
Defines the degree to which database operations in an SQL transaction are
affected by database operations in concurrently executing transactions. It
determines the extent to which the database protects the consistency of your
data.

Oracle Rdb supports isolation levels READ COMMITTED, REPEATABLE
READ, and SERIALIZABLE. When you use SQL with Oracle Rdb databases,
by default, SQL executes a transaction at isolation level SERIALIZABLE.
The higher the isolation level, the more isolated a transaction is from other
currently executing transactions. Isolation levels determine the type of
phenomena that are allowed to occur during the execution of concurrent
transactions. Two phenomena define SQL isolation levels for a transaction:

• Nonrepeatable read

Allows the return of different results within a single transaction when an
SQL operation reads the same row in a table twice. Nonrepeatable reads
can occur when another transaction modifies and commits a change to the
row between transaction reads.

• Phantom

Allows the return of different results within a single transaction when an
SQL operation retrieves a range of data values (or similar data existence
check) twice. Phantoms can occur if another transaction inserted a new
record and committed the insertion between executions of the range
retrieval.

Each isolation level differs in the phenomena it allows. Table 8–9 shows the
phenomena permitted for the isolation levels that you can explicitly specify
with the SET TRANSACTION statement.

SQL Statements 8–331

SET TRANSACTION Statement

Table 8–9 Phenomena Permitted at Each Isolation Level

Isolation Level
Nonrepeatable Reads
Allowed?

Phantoms
Allowed?

READ COMMITTED Yes Yes
REPEATABLE READ No Yes
SERIALIZABLE No No

For read-only transactions, which always execute at isolation level
SERIALIZABLE if snapshots are enabled, the database system guarantees
that you will not see changes made by another user before you issue a
COMMIT statement.

See the Oracle Rdb Guide to SQL Programming for further information about
specifying isolation levels in transactions.

NAME transaction-name
Supplies a title for the transaction. This information is displayed by the SET
FLAGS TRANSACTION keyword.

SQL> declare transaction read write name ’default-transaction’;
SQL> select * from rdb$database;
~T Compile transaction (3) on db: 1
~T Transaction Parameter Block: (len=23)
0000 (00000) TPB$K_VERSION = 1
0001 (00001) TPB$K_BUFFER_NAME "default-transaction"
0016 (00022) TPB$K_WRITE (read write)
~T Start_transaction (3) on db: 1, db count=1

.

.

.

ON alias
AND ON alias
Specifies the alias for a database for which you want to specify transaction
options. An alias is a name for a particular attach to a database. See the
Usage Notes for information about using an alias with a multischema database.

Use the ON clause when you attach to more than one database and want
to specify different transaction options for each database. (If you omit the
ON clause, the single set of transaction options in the SET TRANSACTION
statement applies to all attached databases.)

8–332 SQL Statements

SET TRANSACTION Statement

You can include multiple sets of transaction options, one for each database, in
multiple ON clauses separated with the AND keyword. Example 3 illustrates
a multiple-database transaction.

PARTITION (part-num)
PARTITION When used with the RESERVING clause specifies a list of
numeric partition numbers so that only a subset of the tables partitions are
reserved. For example, an application could submit several processing jobs
that each reserved a separate partition of the table for EXCLUSIVE access.
The default, if this clause is omitted, is to reserve all partitions. An error
is reported if the application references a partition if the table that was not
reserved.

part-num
The numeric identifier for the partition. Partition are numbered from 1.
The CREATE INDEX statement allocates these values and records them in
the RDB$STORAGE_MAP_AREAS table in the column RDB$ORDINAL_
POSITION.

READ
WRITE
DATA DEFINITION
Specifies the lock type. These keywords declare what you intend to do with the
tables you are reserving.

Use READ when you only want to read data from the tables. This is the
default for read-only transactions.

Use WRITE when you want to insert, update, or delete data in the tables.
This is the default for read/write transactions. You cannot specify WRITE for
read-only transactions.

Use DATA DEFINITION when you want to create or alter metadata at the
same time as other users on the same table. This clause can be used only in
read/write transactions. See the Usage Notes for additional information.

READ ONLY
Retrieves a snapshot of the database at the moment the read-only transaction
starts. Other users can update rows in the table you are using, but your
transaction retrieves the rows as they existed at the time the transaction
started. You cannot update, insert, or delete rows, or execute data definition
statements in a read-only transaction with the exception of declaring a local
temporary table or modifying data in a created or declared temporary table.
Read-only transactions are implicitly isolation level serializable.

SQL Statements 8–333

SET TRANSACTION Statement

Because a read-only transaction uses the snapshot (.snp) version of the
database, any changes that other users make and commit during the
transaction are invisible to you. Using a read-only transaction lets you read
data without incurring the overhead of row locking. (You do incur overhead for
keeping a snapshot of the tables you specify in the RESERVING clause, but
this overhead is less than that of a comparable read/write transaction.)

Because of the limited nature of read-only transactions, they are subject to
several restrictions. The Usage Notes describe those restrictions.

READ WRITE
Signals that you want to use the lock mechanisms of SQL for consistency in
data retrieval and update. Read/write is the default transaction. Use the
read/write transaction mode when you need to:

• Insert, update, or delete data

• Retrieve data that is guaranteed to be correct at the moment of retrieval

• Use SQL data definition statements

When you are reading a row in a read/write transaction, no other user can
update that row. Under some circumstances, SQL may lock rows that you are
not explicitly reading.

• If your query is scanning a table without using an index, SQL locks all the
rows in the record stream to maintain isolation level serializable.

• If your query uses indexes, SQL may lock part of an index, which has the
effect of locking several rows.

RESERVING table-name
RESERVING view-name
Lists the tables to be locked during the transaction. Include all the persistent
base tables your transaction will access. You cannot reserve created or declared
temporary tables.

If you use the RESERVING clause to specify tables, you can access only the
tables you have reserved. However, specifying a view in a RESERVING clause
is the same as specifying the base tables on which the view is based.

timeout-value
Specifies the number of seconds for a given transaction to wait for other
transactions to complete. This interval is only valid for the transaction
specified in the SET TRANSACTION statement. Subsequent transactions
return to the database default timeout interval. A timeout value of 0 specifies
NOWAIT.

8–334 SQL Statements

SET TRANSACTION Statement

When starting a transaction, there are three different values that are used to
determine the lock timeout interval for that transaction. Those values are:

1. The value specified in the SET TRANSACTION statement

2. The value stored in the database as specified in CREATE or ALTER
DATABASE

3. The value of the logical name RDM$BIND_LOCK_TIMEOUT_INTERVAL

The timeout interval for a transaction is the smaller of the value specified
in the SET TRANSACTION statement and the value specified in CREATE
DATABASE. However, if the logical name RDM$BIND_LOCK_TIMEOUT_
INTERVAL is defined, the value of this logical name overrides the value
specified in CREATE DATABASE.

USING (tx-options)
USING DEFAULTS
Specifies the transaction options you want for the database referred to by the
alias in the preceding ON clause. You can explicitly specify the transaction,
wait mode, and isolation level option, or you can use the DEFAULTS keyword.
Using DEFAULTS is equivalent to specifying READ WRITE WAIT.

WAIT
NOWAIT
Determines what your transaction does when it encounters a locked row. The
default is WAIT.

• If you specify WAIT, the transaction waits for other transactions to
complete and then proceeds. If you prefer, you can specify that the
transaction proceeds after a certain time interval instead of waiting for
other transactions to complete. You can specify the timeout interval value
after the WAIT keyword. The timeout interval value is expressed in
seconds.

• If you specify NOWAIT, your transaction returns an error message when it
encounters a locked row.

Table 8–10 compares the effects of different lock specifications on multiuser
access.

SQL Statements 8–335

SET TRANSACTION Statement

Table 8–10 Effects of Lock Specifications on Multiuser Access

For Tables You Reserve
Other Users Can
Access the Tables Your Effect on Other Users

Other Users’
Effect on You

READ WRITE

EXCLUSIVE READ
EXCLUSIVE WRITE
EXCLUSIVE DATA
DEFINITION

No access No one else can use the
table.

No effect.

PROTECTED READ PROTECTED READ
SHARED READ

No one else can write to
the table.

No effect.

PROTECTED WRITE SHARED READ No one else can write to
the table. No one else can
read rows you use in any
way until you end your
transaction.

You cannot
update rows
other users
read from
a read/write
transaction.

SHARED READ PROTECTED READ
PROTECTED WRITE
SHARED READ
SHARED WRITE

A SHARED WRITE user
cannot update rows you
use in any way.

You cannot
read rows that
read/write
transactions
insert or update
until those
transactions
end.

(continued on next page)

8–336 SQL Statements

SET TRANSACTION Statement

Table 8–10 (Cont.) Effects of Lock Specifications on Multiuser Access

For Tables You Reserve
Other Users Can
Access the Tables Your Effect on Other Users

Other Users’
Effect on You

READ WRITE

SHARED WRITE SHARED READ
SHARED WRITE

No one else can read or
update rows you update.
No one else can update
rows you use in any way.

You cannot
read or update
rows that other
read/write
transactions
use in any way.

SHARED DATA
DEFINITION

SHARED DATA
DEFINITION

No one can write or read
from the reserved tables.
Other users can create
and alter metadata for the
table concurrently if they
issue the SHARED DATA
DEFINITION clause.

No effect.

READ ONLY

SHARED READ All but EXCLUSIVE No effect. You do not see
changes to rows.

Defaults

The SET TRANSACTION statement has several levels of defaults. If you
omit the statement altogether or issue the SET TRANSACTION statement
by itself, SQL sets a transaction READ WRITE WAIT ISOLATION LEVEL
SERIALIZABLE.

In general, you should use explicit SET TRANSACTION statements, specifying
READ WRITE or READ ONLY, a list of tables in the RESERVING clause, and
a share mode and lock type for each table. The more specific you are in a SET
TRANSACTION statement, the more efficient your database operations will
be.

When a SET TRANSACTION statement starts a transaction, any unspecified
transaction characteristics are normal SQL defaults. Table 8–11 summarizes
the defaults for each option and combination of options.

SQL Statements 8–337

SET TRANSACTION Statement

Table 8–11 Defaults for the SET and DECLARE TRANSACTION Statements

Option Default

Transaction Mode:

• READ WRITE

• READ ONLY

The default is READ WRITE. Which transaction
mode, if any, you specify determines the default
lock specification.

Lock Specification:

• RESERVING • If you specify a read/write transaction
and do not include a RESERVING clause,
SQL determines the lock specification for
each table when it is first accessed by
a data manipulation statement. If the
first reference to a table is within a read
operation, the table is locked for SHARED
READ. When the first update statement
is issued, the table is locked for SHARED
WRITE.

• If you specify a read/write transaction and
include a RESERVING clause, the default is
SHARED.

• If you do not specify a transaction mode
but do include a RESERVING clause, the
default is SHARED.

• If you specify a read-only transaction, the
default is SHARED READ, whether or not
you specify a RESERVING clause.

Share Mode:

• SHARED

• PROTECTED

• EXCLUSIVE

The default is SHARED.

(continued on next page)

8–338 SQL Statements

SET TRANSACTION Statement

Table 8–11 (Cont.) Defaults for the SET and DECLARE TRANSACTION
Statements

Option Default

Lock Type:

• READ

• WRITE

• DATA DEFINITION

• If you specify a read/write transaction, the
default is WRITE.

• If you specify a read-only transaction, the
default, and only allowed lock type, is
READ.

Concurrency Option:

• ISOLATION LEVEL
READ COMMITTED

• ISOLATION LEVEL
REPEATABLE READ

• ISOLATION LEVEL
SERIALIZABLE

The default is ISOLATION LEVEL
SERIALIZABLE.

Wait Mode:

• WAIT

• NOWAIT

The default is WAIT.

Usage Notes

• For each database specified the following restrictions exist:

Only one of the clauses READ ONLY, READ WRITE or BATCH
UPDATE may be used.

No other clauses may be specified with BATCH UPDATE.

Only one of the clauses WAIT and NOWAIT may be used.

ISOLATION LEVEL may only be specified once.

• The clauses can be specified in any order.

• The quoted-string provided for NAME can be up to 255 octets in length.

SQL Statements 8–339

SET TRANSACTION Statement

• You cannot use the SET TRANSACTION statement in an ATOMIC
compound statement.

• The SET TRANSACTION statement may not be executed from a SQL
function or trigger or any stored porcedure called from a SQL function or
trigger.

• If an object is reserved PROTECTED or EXCLUSIVE, that table will
not be subject to nonrepeatable reads (or phantoms) no matter what the
isolation level of the transaction; however, the overall transaction can still
experience these phenomena.

• When you use the SHARED DATA DEFINITION clause, no one (including
you) can query or update the reserved table in the same transaction. Other
users cannot perform any data definition operations on the reserved table
unless they use the SHARED DATA DEFINITION clause.

• To minimize lock conflicts with other users when using the SHARED DATA
DEFINITION clause, commit the transaction immediately.

• All users who are defining indexes on the same table must reserve the
table using the SHARED DATA DEFINITION clause.

• A RESERVING clause that specifies EXCLUSIVE access for the table will
disable concurrent index definition, as only one user will be able to access
the table.

• PROTECTED access cannot be declared with the DATA DEFINITION
clause.

• When using isolation level REPEATABLE READ, you will find cases
when Oracle Rdb holds long-term read locks on rows that are not really
required to prevent the nonrepeatable read phenomenon. Isolation level
REPEATABLE READ reduces index contention not data contention.

• When a sequential scan is done under isolation level READ COMMITTED,
the number of lock operations performed will increase.

• Read-only transactions use a snapshot of the database. For this reason,
they are immune to interference from other transactions and are always
serializable by default. The following SQL statements specify conflicting
transaction options and, if specified, return an error message:

SQL> SET TRANSACTION READ ONLY ISOLATION LEVEL READ COMMITTED;
%SQL-F-SETTRASLI, SET TRANSACTION statement specifies conflicting options
SQL> -- or
SQL> SET TRANSACTION READ ONLY ISOLATION LEVEL REPEATABLE READ;
%SQL-F-SETTRASLI, SET TRANSACTION statement specifies conflicting options

8–340 SQL Statements

SET TRANSACTION Statement

• If a row is read with a FOR UPDATE ONLY cursor, then the row is locked
exclusively and the results will not change until a COMMIT or ROLLBACK
statement is issued.

• If you reserve a table with a particular share mode, that share mode may
override the behavior your specified isolation level implies. For example,
nonrepeatable reads are always prevented in a table explicitly reserved
for protected retrieval. Isolation level REPEATABLE READ will not gain
you any additional concurrency in this case. If some tables are reserved
for protected retrieval and others for concurrent retrieval, nonrepeatable
read prevention will not be attempted in the tables reserved for concurrent
retrieval.

Thus, you can use interactions between the share mode locks and the
isolation level to achieve specific aims; however, Oracle Rdb does not
recommend this level of complexity be used for applications.

• The SET TRANSACTION statement is an executable statement that
both specifies and starts one transaction. You can include multiple SET
TRANSACTION statements in a host language source file or in an SQL
language module (see Chapter 3). The SET TRANSACTION statement has
the following advantages:

It gives you explicit control over when transactions are started.

It provides flexibility for changing transaction characteristics in a
program source file.

• In contrast to the SET TRANSACTION statement, the DECLARE
TRANSACTION statement is not executable and therefore does not start a
transaction. (The declarations in a DECLARE TRANSACTION statement
take effect when SQL starts an implicit transaction, that is, with the first
executable data manipulation or data definition statement following the
DECLARE TRANSACTION, COMMIT, or ROLLBACK statement.)

You can specify only one DECLARE TRANSACTION statement in a
host language source file or an SQL module language source file. The
only way you can change transaction characteristics in programs using
the DECLARE TRANSACTION statement (without using the SET
TRANSACTION statement) is to put SQL statements in separate source
files and specify different DECLARE TRANSACTION statements in each
file.

The advantages offered by the DECLARE TRANSACTION statement are:

It can establish transaction defaults for an interactive SQL session, a
module or single host language file in a program, or any statements
executed dynamically from a module. You might, for example, specify

SQL Statements 8–341

SET TRANSACTION Statement

DECLARE TRANSACTION READ ONLY in the SQLINI.SQL file you
create to set up your interactive SQL environment.

In interactive SQL, the characteristics specified by a DECLARE
TRANSACTION statement are valid until you enter another DECLARE
TRANSACTION statement. (A COMMIT or ROLLBACK statement
followed by a SET TRANSACTION statement may start a transaction
with different characteristics, but subsequent transactions started
implicitly will have the characteristics specified in the last DECLARE
TRANSACTION statement.)

If you specify characteristics using a SET TRANSACTION statement,
however, the characteristics apply only to that transaction. You
must enter the statement again after every COMMIT or ROLLBACK
statement to establish those characteristics again.

The following sequence shows a DECLARE TRANSACTION
statement followed by a SET TRANSACTION statement. The SET
TRANSACTION statement is followed by a ROLLBACK statement.

SQL> -- Declares characteristics for the first transaction:
SQL> --
SQL> DECLARE TRANSACTION READ WRITE;
SQL> --
SQL> -- There is no COMMIT or ROLLBACK statement between the
SQL> -- DECLARE and the SET statements:
SQL> --
SQL> SET TRANSACTION READ ONLY;
SQL> --
SQL> -- The ROLLBACK statement rolls back the SET TRANSACTION
SQL> -- statement.
SQL> --
SQL> ROLLBACK;
SQL> --
SQL> -- The transaction characteristics are once again those
SQL> -- specified in the first DECLARE TRANSACTION statement:
SQL> --
SQL> SELECT * FROM EMPLOYEES;

You can include the DECLARE TRANSACTION statement in an SQL
context file.

In the Oracle Rdb Guide to SQL Programming, the section about
program transportability explains when you may need an SQL context
file to support a program that includes SQL statements.

• Explicitly calling the distributed transaction manager lets you control
when your application transactions across several databases. For more
information, see the Oracle Rdb7 Guide to Distributed Transactions.

8–342 SQL Statements

SET TRANSACTION Statement

• To prevent one database user from corrupting another user’s picture of the
database, SQL:

Delays an operation if the operation needs a row that is locked by
another process, or returns an error if the user specified NOWAIT

Rejects an operation if deadlocks occur (where two processes have
locked rows that each process needs)

No part of a transaction that modifies a database is complete until the
entire transaction is committed successfully. In particular, a deadlock may
occur at any time during the transaction until it is successfully committed.
In programs, except for transactions started in read-only or exclusive
modes, you should check for DEADLOCK after each database operation. In
addition, your program should check for LOCK_CONFLICT if the program
declares a transaction NOWAIT.

Generally, the best way to recover from a deadlock or lock conflict is to use
a ROLLBACK statement and start the transaction again.

When you insert or update data in shared mode, SQL may lock index nodes
for indexes on that table. This feature ensures that SQL will be able to
update those index nodes for the new data. This process frequently causes
deadlocks.

• Because of the limited nature of read-only transactions, SQL imposes the
following restrictions:

You cannot update, insert, or delete data, or execute data definition
statements in a read-only transaction on persistent base tables.

You can update, insert, or delete data in a read-only transaction on
created or declared temporary tables. You can also declare a local
temporary table in a read-only transaction.

In read-only transactions, you can specify only READ lock
specifications. If you specify a WRITE lock specification, SQL generates
an error.

Because a read-only transaction uses the snapshot (.snp) version of
the database, SQL will not start a read-only transaction in a database
created with the SNAPSHOT IS DISABLED argument. If you specify
a read-only transaction for such a database, SQL implicitly declares a
read/write transaction that reserves all tables for a shared read.

SQL Statements 8–343

SET TRANSACTION Statement

SQL considers the exclusive write lock specification incompatible with
the read-only transaction mode because exclusive write transactions do
not write changes to the snapshot version of the database. Read-only
transactions cannot get an up-to-date snapshot of the database until
the exclusive write transaction finishes.

If an update transaction reserves a table for exclusive write, and
a subsequent read-only transaction by another user attempts to
access that table and use the wait option (the default), the read-only
transaction waits until the earlier exclusive write transaction commits
or rolls back and then receives an error message. For example, assume
that a user already has reserved the EMPLOYEES table for exclusive
write. A second user enters:

SQL> ROLLBACK;
SQL> SET TRANSACTION READ ONLY WAIT;
SQL> SELECT * FROM EMPLOYEES;
[waits for EXCLUSIVE WRITE transaction to end]

.

.

.
[EXCLUSIVE WRITE transaction performs COMMIT or ROLLBACK]

%RDB-E-LOCK_CONFLICT, request failed due to locked resource; no-wait
parameter specified for transaction
-RDMS-F-CANTSNAP, can’t ready storage area for snapshots

The read-only transaction must issue the SELECT statement again
after the error message.

If your transaction requires exclusive write access to an area of the
database, you should be aware of the results of the exclusive write
transaction on read-only transactions that try to access a copy of the
same tables in the snapshot file.

• To use an alias with a multischema database, you must enable ANSI/ISO
quoting rules and create a delimited identifier, as shown in Example 4. For
more information about delimited identifiers, see Section 2.2.11.

• A process that enabled update carry-over locking at the table level can
cause concurrency problems if the process reserves tables in PROTECTED
READ or PROTECTED WRITE modes. Carry-over locking at the table
level is set by defining the RDMS$AUTO_READY logical name. See
the Oracle Rdb7 Guide to Database Performance and Tuning for more
information about this logical name and carry-over locking.

8–344 SQL Statements

SET TRANSACTION Statement

• If your application uses a server process that is attached to the database
for long periods of time and causes the snapshot file to grow excessively,
consider disabling prestarted transactions. (Prestarted transactions
are enabled by default.) You can disable prestarted transactions using
the PRESTARTED TRANSACTIONS ARE OFF clause of the ATTACH,
CONNECT, DECLARE ALIAS, CREATE DATABASE, and IMPORT
statements. For more information, see the ATTACH Statement and the
Oracle Rdb7 Guide to Database Performance and Tuning.

• If you use the SET TRANSACTION statement in a stored procedure
with either the RESERVING table clause or the EVALUATING constraint
clause, SQL establishes procedure dependencies on the tables or constraints
that you specify. See the CREATE MODULE Statement for a list of
statements that can or cannot cause stored procedure invalidation.

See the Oracle Rdb Guide to SQL Programming for detailed information
about stored procedure dependency types and how metadata changes can
cause invalidation of stored procedures.

• The SET TRANSACTION EVALUATING AT VERB TIME statement is not
allowed for NOT DEFERRABLE constraints.

• Each table referenced by a view is automatically reserved in the same
mode in which the view is reserved, unless the table is explicitly reserved
in the SET TRANSACTION statement. In a READ ONLY transaction all
tables are accessed for read-only.

• Any table referenced by a constraint or trigger is reserved in SHARED
READ mode unless reserved at a higher mode by an explicit SET
TRANSACTION statement.

• Any table updated by a trigger is reserved in SHARED WRITE mode,
unless reserved at a higher mode by an explicit SET TRANSACTION
statement. If the SET TRANSACTION statement has already reserved the
table for READ access, an error is returned when the trigger is loaded.

• If a READ ONLY transaction is in progress, then neither triggers or
constraints are active. Because triggers and constraints are loaded only for
update operations, nothing is automatically reserved in this situation.

• Any table referenced in a COMPUTED BY, AUTOMATIC, or DEFAULT
expression is implicitly reserved in SHARED READ mode by the
referencing statement. If the table is indirectly accessed by a stored
function then use LOCK TABLE to reserve the table.

SQL Statements 8–345

SET TRANSACTION Statement

• The partition clause is not permitted if a table does not have a storage
map, or has a vertically partitioned storage map (that is, it uses the
STORE COLUMNS clause). If an index and the storage map have identical
STORE clauses, then both are locked using the same list of partition
numbers.

• Using the PARTITION clause requires careful database and application
design. If the indexes are partitioned using different partitioning keys or
different value ranges, then cross-partition updates might lead to deadlocks
and other lock conflicts between concurrent update processes.

• By default, a transaction that reserves a table for EXCLUSIVE access
does not reserve the LIST (segmented string) area for exclusive access.
Because the LIST area is usually shared by many tables, SHARED access
is assumed by default to permit updates to the other tables.

This means that when you run an import operation or when an application
updates a table reserved for EXCLUSIVE access, you might notice that the
snapshot storage area (.snp) grows. This is because of the I/O to the LIST
area that is performed by default when SHARED WRITE mode is in use.

However, if you attach to the database using an SQL ATTACH or IMPORT
statement and you specify the RESTRICTED ACCESS clause, then all
storage areas are accessed in EXCLUSIVE mode. Use this clause to
eliminate the snapshot I/O and related overhead if you are performing
a lot of I/O to the LIST storage areas (for example, when you are
restructuring the database, or dropping a large table containing LIST
OF BYTE VARYING columns and data).

Examples

Example 1: Starting a read-only transaction

SQL> SET TRANSACTION READ ONLY;

This statement lets you read data from the database but not insert or update
data. When you retrieve data, you see the database records as they existed
at the time SQL started the transaction. You do not see any updates to the
database made after that time.

8–346 SQL Statements

SET TRANSACTION Statement

Example 2: Reserving specific tables with the SET TRANSACTION statement

The following statement lets you specify the intended action for each table in
the transaction:

SQL> ATTACH ’FILENAME mf_personnel’;
SQL> SET TRANSACTION READ WRITE RESERVING
cont> EMPLOYEES FOR PROTECTED WRITE,
cont> JOBS, SALARY_HISTORY FOR SHARED READ;

Assume that this transaction updates the EMPLOYEES table based on values
found in two other tables: JOBS and SALARY_HISTORY.

• The transaction must update the EMPLOYEES table, so EMPLOYEES is
readied for protected write access.

• The program will only read values from the JOBS and SALARY_HISTORY
tables, so there is no need for write access or protected write access.
However, you do intend to update records in the transaction, so a read-only
transaction is not appropriate.

Example 3: Specifying multiple databases in a SET TRANSACTION statement

You can access multiple databases from within the same transaction. This
example explains how you can benefit from this feature.

Read-only transactions use a snapshot version of the data, and therefore you
might encounter older values in the data your application retrieves. because
another transaction using a read/write transaction might be updating a table.

The snapshot file represents a before-image of the database rows that the other
program is updating. If you require The very latest data, you should specify
read/write access for both databases, and permit other users to read one of the
databases by including the shared read mode. In this way, you maintain data
consistency during updates, while permitting concurrent data retrieval from
the database that your program reads.

However, any read/write transaction you set offers reduced concurrent
access when compared to read-only access. For that reason, use read/write
transactions only when necessary.

Before you can use the multiple database feature of the SET TRANSACTION
statement, you must issue a DECLARE ALIAS statement that specifies each
database you intend to access. The DECLARE ALIAS statement must include
an alias. For example, the following DECLARE ALIAS statements identify two
databases required by an update application:

SQL Statements 8–347

SET TRANSACTION Statement

EXEC SQL
DECLARE DB1 ALIAS FOR FILENAME PERSONNEL;
END EXEC

EXEC SQL
DECLARE DB2 ALIAS FOR FILENAME benefits;
END EXEC

Because the program needs to only read the EMPLOYEES table of the
PERSONNEL database but needs to change values in two tables (TUITION
and STATUS) in the BENEFITS database, the update program might contain
the following SET TRANSACTION statement:

EXEC SQL SET TRANSACTION
ON DB1 USING (READ ONLY
RESERVING DB1.EMPLOYEES FOR SHARED READ)

AND
ON DB2 USING (READ WRITE
RESERVING DB2.TUITION FOR SHARED WRITE

DB2.STATUS FOR SHARED WRITE)

END EXEC

Example 4: Specifying a multischema database in a SET TRANSACTION
statement

If one of the databases you access is a multischema database, you must specify
it using a delimited identifier. The following example shows how to access
the single-schema personnel database and the multischema corporate_data
database. The table EMPLOYEES is located within the schema PERSONNEL
in the catalog ADMINISTRATION within the CORPORATE_DATA database.

SQL> ATTACH ’ALIAS CORP FILENAME corporate_data’;
SQL> ATTACH ’ALIAS PERS FILENAME personnel’;
SQL> SET QUOTING RULES ’SQL92’;
SQL> SET CATALOG ’"CORP.ADMINISTRATION"’;
SQL> SET SCHEMA ’"CORP.ADMINISTRATION".PERSONNEL’;
SQL> --
SQL> SET TRANSACTION ON CORP USING (READ ONLY
cont> RESERVING "CORP.EMPLOYEES" FOR SHARED READ)
cont> AND ON PERS USING (READ WRITE RESERVING
cont> PERS.EMPLOYEES FOR SHARED WRITE);

8–348 SQL Statements

SET TRANSACTION Statement

Example 5: Specifying evaluation at verb time in a SET TRANSACTION
statement

The following example shows an insert into the DEGREES table of a newly
acquired degree for EMPLOYEE_ID 00164. The new degree, MME, is
evaluated and, because it is not one of the acceptable degree codes, an error
message is returned immediately.

SQL> ATTACH ’FILENAME personnel’;
SQL> SET TRANSACTION READ WRITE
cont> EVALUATING DEGREES_FOREIGN1 AT VERB TIME,
cont> DEGREES_FOREIGN2 AT VERB TIME,
cont> DEG_DEGREE_VALUES AT VERB TIME
cont> RESERVING DEGREES FOR PROTECTED WRITE,
cont> COLLEGES, EMPLOYEES FOR SHARED READ;
SQL> SHOW TRANSACTION
Transaction information:

Statement constraint evaluation is off

On the default alias
Transaction characteristics:

Read Write
Evaluating constraint DEGREES_FOREIGN1 at verb time
Evaluating constraint DEGREES_FOREIGN2 at verb time
Evaluating constraint DEG_DEGREE_VALUES at verb time
Reserving table DEGREES for protected write
Reserving table COLLEGES for shared read
Reserving table EMPLOYEES for shared read

Transaction information returned by base system:
a read-write transaction is in progress
- updates have not been performed
- transaction sequence number (TSN) is 153
- snapshot space for TSNs less than 153 can be reclaimed
- session ID number is 21

SQL> INSERT INTO DEGREES
cont> (EMPLOYEE_ID, COLLEGE_CODE, YEAR_GIVEN,
cont> DEGREE, DEGREE_FIELD)
cont> VALUES
cont> (’00164’, ’PRDU’, 1992,
cont> ’MME’, ’Mech Enging’);
%RDB-E-INTEG_FAIL, violation of constraint DEG_DEGREE_VALUES caused
operation to fail
-RDB-F-ON_DB, on database DISK1:[JONES.PERSONNEL]PERSONNEL.RDB;1
SQL> ROLLBACK;

SQL Statements 8–349

SET TRANSACTION Statement

Example 6: Explicitly setting isolation levels in a transaction

This statement lets you read data from and write data to the database. It also
sets the transaction to run at isolation level READ COMMITTED, not at the
higher default isolation level SERIALIZABLE.

SQL> SET TRANSACTION READ WRITE ISOLATION LEVEL REPEATABLE READ;

Example 7: Creating index concurrently

The following example shows how to reserve the table for shared data
definition and how to create an index:

SQL> SET TRANSACTION READ WRITE
cont> RESERVING EMPLOYEES FOR SHARED DATA DEFINITION;
SQL> --
SQL> CREATE INDEX EMP_LAST_NAME1 ON EMPLOYEES (LAST_NAME);
SQL> --
SQL> -- Commit the transaction immediately.
SQL> --
SQL> COMMIT;

Example 8: Reserving a Partition

SQL> -- This example locks only the second partition of
SQL> -- the EMPLOYEES table in exclusive write mode.
SQL> -- The advantage of this is that the process can insert,
SQL> -- update, or delete from this partition without writing
SQL> -- to the snapshot (.snp) file, and in general, uses fewer
SQL> -- resources for operations on the partition.
SQL> SET TRANSACTION READ WRITE
cont> RESERVING EMPLOYEES PARTITION (2) FOR EXCLUSIVE WRITE;

Example 9: Interaction between RESERVING clause and column DEFAULT
values

This example examines the interaction between the RESERVING clause and
DEFAULT values that reference tables (either directly and indirectly). The
RESERVING clause of SET TRANSACTION limits the transaction to just
those tables listed for the transaction.

Tables directly referenced by constraints, triggers, COMPUTED BY columns,
AUTOMATIC columns and DEFAULT values are implicitly reserved for
SHARED READ. However, if these definitions reference the table indirectly via
a stored function then that table is not considered for automatic reservation.

This example uses DEFAULT value to contrast three different mechanisms and
their interactions with the RESERVING clause. The same technique could be
applied to other definitions such as triggers and constraints.

8–350 SQL Statements

SET TRANSACTION Statement

The DEFAULT value is derived from a secondary table (DEFAULTS) that
holds one value for each valid user of the database. The DEFAULT is retrieved
based on the value of CURRENT_USER. In the three tables below the value is
either directly fetched (SAMPLE_TABLE2), or via a stored function (SAMPLE_
TABLE1, and SAMPLE_TABLE3).

The SQL function GET_DEFAULT3 includes a LOCK TABLE statement to
ensure that the table is correctly reserved. Oracle recommends this approach
since it relieves the programmer from knowing which tables might be required
when coding a RESERVING clause for a transaction.

SQL> set dialect ’sql99’;
SQL>
SQL> create table DEFAULTS
cont> (user_id rdb$object_name primary key,
cont> valid_number integer);
SQL> insert into DEFAULTS values (’SMITH’, 100);
1 row inserted
SQL>
SQL> create module UTL1
cont> function GET_DEFAULT1 ()
cont> returns integer
cont> not deterministic;
cont> return (select valid_number from DEFAULTS
cont> where user_id = CURRENT_USER);
cont> end module;
SQL>
SQL> create table SAMPLE_TABLE1
cont> (id integer identity,
cont> quantity integer
cont> default GET_DEFAULT1 ()
cont>);
SQL>
SQL> create table SAMPLE_TABLE2
cont> (id integer identity,
cont> quantity integer
cont> default (select valid_number from DEFAULTS
cont> where user_id = CURRENT_USER)
cont>);
SQL>
SQL> create module UTL3
cont> function GET_DEFAULT3 ()
cont> returns integer
cont> not deterministic;
cont> begin
cont> lock table DEFAULTS for shared read mode;
cont> return (select valid_number from DEFAULTS
cont> where user_id = CURRENT_USER);
cont> end;

SQL Statements 8–351

SET TRANSACTION Statement

cont> end module;
SQL>
SQL> create table SAMPLE_TABLE3
cont> (id integer identity,
cont> quantity integer
cont> default GET_DEFAULT3 ()
cont>);
SQL>
SQL> commit;

The following transactions succeed or fail as explained in the example.

SQL> /*
***> Fails because the module references a table that is not reserved
***> */
SQL> set transaction read write
cont> reserving SAMPLE_TABLE1 for shared write;
SQL> insert into SAMPLE_TABLE1 default values;
%RDB-E-UNRES_REL, relation DEFAULTS in specified request is not a
relation reserved in specified transaction
SQL> rollback;
SQL>
SQL> /*
***> Succeeds because direct access to the table from the DEFAULT
***> is implicitly added to the reserving list as SHARED READ
***> */
SQL> set transaction read write
cont> reserving SAMPLE_TABLE2 for shared write;
SQL> insert into SAMPLE_TABLE2 default values;
1 row inserted
SQL> rollback;
SQL>
SQL> /*
***> Succeeds because the routine adds the table to the reserved
***> table list using LOCK TABLE.
***> */
SQL> set transaction read write
cont> reserving SAMPLE_TABLE3 for shared write;
SQL> insert into SAMPLE_TABLE3 default values;
1 row inserted
SQL> rollback;
SQL>

8–352 SQL Statements

SET VIEW UPDATE RULES Statement

SET VIEW UPDATE RULES Statement

Specifies whether or not SQL applies the ANSI/ISO SQL standard for
updatable views to views created during a session.

Environment

You can use the SET VIEW UPDATE RULES statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

SET VIEW UPDATE RULES runtime-options

runtime-options

’string-literal’
parameter
parameter-marker

Arguments

’string-literal’
parameter
parameter-marker
Specifies the value of runtime-options, which must be one of the following:

• SQL99

• SQL92

• SQL89

• MIA

• SQLV40

SQL Statements 8–353

SET VIEW UPDATE RULES Statement

SQL99
SQL92
SQL89
MIA
Specifies that the ANSI/ISO SQL standard for updatable views is applied to all
views created during compilation. Views that do not comply with the ANSI/ISO
SQL standard for updatable views cannot be updated.

The ANSI/ISO SQL standard for updatable views requires the following
conditions to be met in the SELECT statement:

• The DISTINCT keyword is not specified.

• Only column names can appear in the select list. Each column name can
appear only once. Functions and expressions such as max(column_name)
or column_name +1 cannot appear in the select list.

• The FROM clause refers to only one table. This table must be either a base
table or a derived table that can be updated.

• The WHERE clause does not contain a subquery.

• The GROUP BY clause is not specified.

• The HAVING clause is not specified.

SQLV40
Specifies that the ANSI/ISO SQL standard for updatable views is not applied.

SQL considers views that meet the following conditions to be updatable:

• The DISTINCT keyword is not specified.

• The FROM clause refers to only one table. This table must be either a base
table or a derived table that can be updated.

• The WHERE clause does not contain a subquery.

• The GROUP BY clause is not specified.

• The HAVING clause is not specified.

The default is SQLV40.

8–354 SQL Statements

SET VIEW UPDATE RULES Statement

Usage Notes

• If the SET DIALECT statement is processed after the SET VIEW UPDATE
RULES statement, it can override the setting of the SET VIEW UPDATE
RULES statement.

• Specifying the SET VIEW UPDATE RULES statement changes the view
rules for the current connection only. Use the SHOW CONNECTIONS
statement to display the characteristics of a connection.

Example

Example 1: Setting the view characteristics from SQLV40 to SQL99

SQL> ATTACH ’ALIAS ENV1 FILENAME ENVIRONMENT’;
SQL> CONNECT TO ’ALIAS ENV1 FILENAME ENVIRONMENT’ AS ’TEST’;
SQL> SHOW CONNECTIONS TEST
Connection: TEST
Default alias is RDB$DBHANDLE
Default catalog name is RDB$CATALOG
Default schema name is SMITH
Dialect: SQLV40
Default character unit: OCTETS
Keyword Rules: SQLV40
View Rules: SQLV40
Default DATE type: DATE VMS
Quoting Rules: SQLV40
Optimization Level: DEFAULT
Hold Cursors default: WITH HOLD PRESERVE NONE
Quiet commit mode: OFF
Compound transactions mode: EXTERNAL
Default character set is DEC_MCS
National character set is DEC_MCS
Identifier character set is DEC_MCS
Literal character set is DEC_MCS
Display character set is UNSPECIFIED

SQL Statements 8–355

SET VIEW UPDATE RULES Statement

Alias ENV1:
Identifier character set is DEC_MCS
Default character set is DEC_MCS
National character set is KANJI

SQL> --
SQL> -- Change the environment for view rules from SQLV40 to SQL99
SQL> --
SQL> SET VIEW UPDATE RULES ’SQL99’;
SQL> SHOW CONNECTIONS TEST
Connection: TEST
Default alias is RDB$DBHANDLE
Default catalog name is RDB$CATALOG
Default schema name is SMITH
Dialect: SQLV40
Default character unit: OCTETS
Keyword Rules: SQLV40
View Rules: ANSI/ISO
Default DATE type: DATE VMS
Quoting Rules: SQLV40
Optimization Level: DEFAULT
Hold Cursors default: WITH HOLD PRESERVE NONE
Quiet commit mode: OFF
Compound transactions mode: EXTERNAL
Default character set is DEC_MCS
National character set is DEC_MCS
Identifier character set is DEC_MCS
Literal character set is DEC_MCS
Display character set is UNSPECIFIED

Alias ENV1:
Identifier character set is DEC_MCS
Default character set is DEC_MCS
National character set is KANJI

8–356 SQL Statements

SHOW Statement

SHOW Statement

Displays information about database entities and information about the
interactive SQL session.

Environment

You can use the SHOW statement only in interactive SQL.

Format

SHOW show-params-1
show-params-2
show-session-information

show-params-1 =

show-aliases
show-cache
show-catalogs
CHARACTER SETS
show-collating-sequence
show-connections
CURSORS
show-databases
DISPLAY
show-domains
FLAGS
show-functions
show-indexes
show-journals
show-modules
show-outlines

SQL Statements 8–357

SHOW Statement

show-params-2 =

show-profiles
show-privileges
show-procedures
QUERY CONFIRM
QUERY LIMIT
show-roles
show-schemas
show-sequences
show-storage-areas
show-storage-maps
show-synonyms
show-tables
show-triggers
show-users
show-users-granting
show-users-with
VARIABLES
show-views

show-aliases =

ALIASES
<alias>

,
*

show-cache =

CACHE
<name-list>

show-catalogs =

CATALOGS
name-list

show-collating-sequence =

COLLATING SEQUENCE
name-list

8–358 SQL Statements

SHOW Statement

show-connections =

CONNECTIONS
DEFAULT
CURRENT
<connection-name>

,

show-databases =

DATABASES
<alias>

,
*

show-domains =

DOMAINS
SYSTEM name-list
ALL

show-functions =

FUNCTIONS
SYSTEM (COMMENT) name-list
ALL ID

LANGUAGE
MODULE
OWNER
PARAMETER
SOURCE

,

show-indexes =

INDEXES
SYSTEM INDICES ON <table-name>
ALL ,

name-list
(CARDINALITY name-list)

PARTITIONS
,

SQL Statements 8–359

SHOW Statement

show-journals

JOURNALS
name-list

show-modules =

MODULES
SYSTEM (COMMENT) name-list
ALL FUNCTIONS

ID
NAME
OWNER
PROCEDURES
VARIABLES

,

show-outlines

OUTLINES
name-list

show-profiles =

PROFILES
name-list

name-list =

*
<alias> . <object-name>

,

8–360 SQL Statements

SHOW Statement

show-privileges =

PROTECTION ON TABLES <table-name>
,

PRIVILEGES ON VIEWS <view-name>
,

COLUMNS <column-name>
,

DATABASE <alias>
,

FUNCTION <function-name>
,

PROCEDURE <procedure-name>
,

MODULE <module-name>
,

SEQUENCE <sequence-name>
,

show-procedures =

PROCEDURES
SYSTEM (COMMENT) name-list
ALL ID

LANGUAGE
MODULE
OWNER
PARAMETER
SOURCE

,

show-roles =

ROLES
name-list

show-schemas =

SCHEMAS
name-list

SQL Statements 8–361

SHOW Statement

show-sequences=

SEQUENCES
name-list

show-storage-areas =

STORAGE AREAS
name-list
(USAGE) name-list

ATTRIBUTES
,

show-storage-maps =

STORAGE MAPS
SYSTEM name-list
ALL (PARTITIONS) name-list

show-synonyms =

SYNONYMS
name-list

show-tables =

TABLES
SYSTEM name-list
ALL (COLUMNS) name-list

COMMENT
CONSTRAINTS
INDEXES
STORAGE MAPS
TRIGGERS

,

show-triggers =

TRIGGERS
SYSTEM name-list
ALL

8–362 SQL Statements

SHOW Statement

show-users =

USERS
name-list

show-users-granting =

USERS GRANTING

db-privs-ansi ON DATABASE <alias>
,

table-privs-ansi ON TABLE <table-name>
,

column-privs-ansi ON COLUMN <column-name>
,

ext-routine-privs-ansi ON FUNCTION <function-name
,

ON PROCEDURE <procedure-name
,

module-privs-ansi ON MODULE <module-name>
,

sequence-privs-ansi ON SEQUENCE <sequence-name>
,

TO identifier-ansi-style
PUBLIC

show-views =

VIEWS
SYSTEM (COLUMNS)
ALL COMMENT

SOURCE
,

name-list

SQL Statements 8–363

SHOW Statement

db-privs-ansi =

SELECT
INSERT
OPERATOR
DELETE
CREATE
ALTER
DROP
DBCTRL
DBADM
SHOW
REFERENCES
UPDATE
SECURITY
DISTRIBTRAN

,
ALL PRIVILEGES

table-privs-ansi =

SELECT
INSERT
OPERATOR
DELETE
CREATE
ALTER
DROP
DBCTRL
SHOW
REFERENCES

(<column-name>)
,

UPDATE
(<column-name>)

,
,

ALL PRIVILEGES

column-privs-ansi =

UPDATE
REFERENCES

,
ALL PRIVILEGES

8–364 SQL Statements

SHOW Statement

ext-routine-privs-ansi =

ALTER
DBCTRL
DROP
EXECUTE
REFERENCES
SHOW

,
ALL PRIVILEGES

module-privs-ansi =

ALTER
DBCTRL
DROP
EXECUTE
REFERENCES
SHOW

,
ALL PRIVILEGES

identifier-ansi-style =

user-identifier

SQL Statements 8–365

SHOW Statement

show-users-with =

USERS WITH

db-privs-ansi ON DATABASE <alias>
,

table-privs-ansi ON TABLE <table-name>
,

column-privs-ansi ON COLUMN <column-name>
,

ext-routine-privs-ansi ON FUNCTION <function-name>
,

ON PROCEDURE <procedure-name>
,

module-privs-ansi ON MODULE <module-name>
,

sequence-privs-ansi ON SEQUENCE <sequence-name>
,

FROM identifier-ansi-style
PUBLIC

sequence-privs-ansi =

ALTER
DBCTRL
DROP
SELECT

,
ALL PRIVILEGES

8–366 SQL Statements

SHOW Statement

show-session-information =

ANSI DATE MODE
ANSI IDENTIFIERS MODE
ANSI QUOTING MODE
AUTOMATIC TRANSLATION
CONSTRAINT MODE
CONTINUATION CHARACTER
CURRENCY SIGN
DATE FORMAT
DICTIONARY
DIGIT SEPARATOR
DISPLAY
EXECUTION MODE
FLAGGER MODE
HOLD CURSORS MODE
LANGUAGE
RADIX POINT
SQLCA
TRANSACTION
VERSIONS
WARNING MODE

Arguments

*
alias.*
Specifies an asterisk wildcard, preceded by an optional alias. If you do not
precede the wildcard with an alias, SQL displays information about the objects
in the default database. If you precede the wildcard with an alias, SQL
displays information about objects in that database.

ALIASES
Displays information about aliases for all attached databases. For each alias,
SQL displays the path name or file name of the current default database, and
the file specification for the database file.

If you specify aliases by name, SQL displays information about whether or not
multischema mode, snapshots, carry-over locks, adjustable lock granularity,
global buffers, commit to journal optimization, and journal fast commit
are enabled. SQL displays the character sets of the alias if the database
default, national, or identifier character set differs from the session’s default,
national, or identifier character set. SQL also displays the journal fast
commit checkpoint and transaction intervals, the lock timeout interval, the
number of users, number of nodes, buffer size, number of buffers, number of

SQL Statements 8–367

SHOW Statement

recovery buffers, ACL-based protections, storage areas, and whether or not the
repository is required.

ANSI DATE MODE
Displays the default interpretation for columns with the DATE or CURRENT_
TIMESTAMP data type.

The DATE and CURRENT_TIMESTAMP data types, can be either OpenVMS
or ANSI/ISO. By default, both data types are interpreted as OpenVMS format.

Use the SET DEFAULT DATE FORMAT statement to change the default date.

ANSI IDENTIFIERS MODE
Displays whether or not identifier checking is enabled. You must enclose
reserved words from the ANSI/ISO SQL standard within double quotation
marks to supply them as identifiers in SQL statements. When you enable
identifier checking, SQL issues an informational message after statements
that misuse ANSI/ISO reserved words. For a list of the reserved words, see
Appendix F.4.

By default, identifier checking is disabled. To enable it, use the SET
KEYWORD RULES statement.

ANSI QUOTING MODE
Displays whether or not you must use double quotation marks to delimit the
alias and catalog name pair in subsequent statements. By default, SQL syntax
allows only single quotation marks.

Use the SET QUOTING RULES statement to change the quoting rules.

AUTOMATIC TRANSLATION
Displays the current setting as established using SET AUTOMATIC
TRANSLATION.

CACHE
Displays information about the specified cache. For example:

SQL> SHOW CACHE
Cache Objects in database with filename sample

CACHE1
CACHE2

SQL> SHOW CACHE cache1

8–368 SQL Statements

SHOW Statement

CACHE1
Cache Size: 1000 rows
Row Length: 256 bytes
Row Replacement: Enabled
Shared Memory: Process
Large Memory: Disabled
Window Count: 100
Reserved Rows: 20
Sweep Rows: 3000
No Sweep Thresholds
Allocation: 100 blocks
Extent: 100 blocks

CATALOGS
Displays information about the specified catalogs. If you do not specify any
aliases in the catalog names that you specify, SQL displays this information
about all attached databases.

CHARACTER SETS
Displays information about the specified character sets for the session and all
attached databases.

COLLATING SEQUENCE sequence-name
Displays the collating sequences for schemas and domains.

CONNECTIONS DEFAULT
CONNECTIONS CURRENT
CONNECTIONS connection-name
Displays database information for the specified connection.

CONSTRAINT MODE
Displays the default setting for constraint evaluation for any transactions
starting after the current transaction. If there is a current transaction,
displays the constraint evaluation mode for the current transaction.

When the constraint mode is IMMEDIATE, SQL evaluates all commit-time
constraints at the end of each statement and at commit time, until the
transaction completes or until you set the constraint mode to OFF. When the
constraint mode is DEFERRED (the default setting), constraint evaluation is
deferred until commit time.

CONTINUE CHARACTER
Displays the value for the continuation character, as established using SET
CONTINUE CHARACTER.

SQL Statements 8–369

SHOW Statement

CURRENCY SIGN
Displays the currency indicator, such as the dollar sign ($), that will be used
in output displays.

CURSORS
Displays current cursors.

DATABASES
Displays information about the specified databases. For each database, SQL
displays the alias, the type of database, any defined collating sequence, and the
file specification for the database file.

If the database was declared using a repository path name, SQL also displays
that path name. If you do not specify any aliases with the SHOW DATABASES
statement, SQL displays this information about all declared databases.

SQL displays the character sets of the database if the default, national, or
identifier character set differs from the session’s default, national, or identifier
character set.

If you do specify an alias, SQL also displays information about whether or not
multischema mode, snapshots, carry-over locks, adjustable lock granularity,
global buffers, commit to journal optimization, journaling, and journal fast
commit are enabled. SQL also displays the journal fast commit checkpoint and
transaction intervals, the lock timeout interval, the number of unused storage
areas, the number of unused journal files, the number of users, number of
nodes, buffer size, number of buffers, number of recovery buffers, ACL-based
protections, storage areas, and whether or not the repository is required.

DATE FORMAT
Displays the values for the date-number and time-number arguments of the
SET DATE FORMAT DATE date-number and SET DATE FORMAT TIME
time-number statements.

DICTIONARY
Displays the current default dictionary directory in the data dictionary.

DIGIT SEPARATOR
Displays the character that will be used as the digit separator in output
displays. (The digit separator is the symbol that separates groups of three
digits in values greater than 999. For example, the comma is the digit
separator in the number 1,000.)

8–370 SQL Statements

SHOW Statement

DISPLAY
Displays the current settings as established using SET DISPLAY, SET
FEEDBACK, SET HEADING, SET LINE LENGTH (or SET LINESIZE),
SET PAGE LENGTH (or SET PAGESIZE), SET TIMING and SET NULL.
Some values (such as line and page length) are determined from the OpenVMS
terminal characteristics when starting interactive SQL.

DOMAINS
Displays the names, data types, and character sets of specified domains. If you
specify the SHOW DOMAINS statement without any arguments, SQL displays
names, data types, and character sets of all domains in all attached databases.

EXECUTION MODE
Shows whether or not SQL executes the statements that you issue in your
interactive SQL session. The default is to execute the statements as you issue
them. However, if you have issued a SET NOEXECUTE statement in your
session, SQL will not execute subsequent statements.

You can use the SET NOEXECUTE statement to display access strategies and
check for syntax errors. For more information, see the SET Statement.

FLAGGER MODE
Shows whether or not SQL flags statements containing nonstandard syntax for
all set flaggers. If you specify SET FLAGGER ON, which is equivalent to SET
FLAGGER SQL92_ENTRY ON, the SHOW FLAGGER statement informs you
that flagging for the ANSI/ISO standard is set. If you specified SET FLAGGER
MIA ON, the SHOW FLAGGER statement informs you that flagging for the
MIA standard is set.

FLAGS
Displays the database system debug flags that are enabled for the current
session.

FROM identifier-ansi-style
FROM PUBLIC
Specifies the identifiers for the new or modified access privilege set entry.
Specifying PUBLIC is equivalent to a wildcard specification of all user
identifiers.

FUNCTIONS
Displays information about a specified function; either external or stored.
When you enter the SHOW FUNCTIONS statement without any arguments,
SQL displays the name of the function only. The following table lists the

SQL Statements 8–371

SHOW Statement

information that you can display using a set of keywords with the SHOW
FUNCTIONS statement:

You Specify This: SQL Displays Information About:

COMMENT The description of the function. If none exists, nothing
displays.

ID The unique identification assigned to the function.
LANGUAGE The host language in which the function is coded.
MODULE The name of the module in which the function is defined.
OWNER The owner of the function.
PARAMETER Information about the parameters, including the number

of arguments, the data type, return type, and how the
parameter is passed.

SOURCE Displays the source definitions for the specified functions.

HOLD CURSORS MODE
Displays the default mode for hold cursors. For example:

SQL> SHOW HOLD CURSORS MODE
Hold Cursors default: WITH HOLD PRESERVE NONE

INDEXES
Displays information about specified indexes. SQL displays the name of
the index, the associated column and table, the size of the index key, if the
definition allows duplicate values for the column, the type of index (sorted
or hashed), and whether index compression is enabled or disabled. If you
specify the SHOW INDEXES statement without any arguments, SQL displays
definitions of all indexes in all declared databases.

You Specify This: SQL Performs This Action:

CARDINALITY Adds the index and column prefix cardinality values to the
SHOW output.

PARTITIONS Displays the index partitions showing the partition name
and number the name of the storage area used for the
partition.

JOURNALS
Displays information about specified journal files. SQL displays the name of
the file specification and, if created, the backup file specification.

8–372 SQL Statements

SHOW Statement

LANGUAGE
Displays the language to be used for translation of month names and
abbreviations in date and time input and display. The language name also
determines the translation of other language-dependent text, such as the
translation for the date literals YESTERDAY, TODAY, and TOMORROW.

MODULES
Displays information about specified modules.

If you do not specify any of the SHOW MODULES options listed in the
following table, SQL displays information about all these options:

You Specify This: SQL Displays Information About:

COMMENT The description of the module. If none exists, nothing
displays.

FUNCTIONS The stored functions contained in the module.
ID The unique identification assigned to the module.
NAME The name of the module.
OWNER The owner of the module. If the module is a definer’s

rights module, the definer’s user name displays, otherwise
for an invoker’s rights module the output will be blank.

PROCEDURES The stored procedures contained in the module.
VARIABLES Displays module global variables.

name-list
Most SHOW statements accept an optional name-list which can specify the
name of the object, or a wildcard (*) to indicate a summary of all such objects.
The wildcard or name can be prefixed by an alias name, or for multischema
databases a catalog and schema.

Names are by default in uppercase. If the object was defined in mixed or lower
case, or with other special characters then use the SET DIALECT, or SET
QUOTING RULES statements to enable delimited identifers. Then use quotes
("") around the name in the SHOW statement.

object-name
Specifies the name of an object whose definition you want to display.

ON DATABASE alias
Specifies the databases for which you want to display access privilege
set information with the SHOW PRIVILEGES or SHOW PROTECTION

SQL Statements 8–373

SHOW Statement

statement. You can specify a list of aliases, but you must specify at least one.
To display privileges for the default database, use the alias RDB$DBHANDLE.

ON TABLES table-name
ON VIEWS view-name
ON COLUMNS column-name
ON FUNCTIONS function-name
ON PROCEDURES procedure-name
ON MODULES module-name
ON SEQUENCES sequence-name
Specifies the object for which you want to display access privilege set
information with the SHOW PRIVILEGES or SHOW PROTECTION
statement. You can specify a list of names, but you must specify at least
one item to display a list. You must qualify a column name with at least the
associated table name.

In an ANSI/ISO-style database, the SHOW PROTECTION statement displays
which privileges have the option of being granted to other users and which
privileges are without the grant option. See the SHOW USERS WITH and
SHOW USERS GRANTING statements in this section for more information
about displaying privileges granted directly or indirectly to other users.

ON table-name
Specifies the table or tables for which you want to see associated index
definitions.

OUTLINES
Displays the definition of the specified outline. SQL displays the outline name,
ID number, mode, query, compliance, and comment if one exists.

If you issue the SHOW OUTLINE statement without the name of a specific
outline, the names of all the outlines stored in the database are displayed.
However, the invalid outlines are not marked as invalid.

PRIVILEGES
PROTECTION
Displays current user identifier and available access rights for the specified
object.

• The SHOW PRIVILEGES statement displays the current user identifier
and available access rights to the specified databases, tables, views,
columns, external functions, external procedures, modules, or sequences.

This statement displays not only the privileges that are explicitly granted
to the user, but also any privileges that the user inherits from database
access or the operating system.

8–374 SQL Statements

SHOW Statement

In a client/server environment, the entry shows the identifier of the client.
For example, if a user attaches to a remote database using the USER and
USING clauses, SQL shows the privileges for the user specified in those
clauses.

In an environment that is not client/server, such as when you attach to a
local database, SQL shows not only the privileges of the database user, but
of the logged-on process. For example, if user heleng, with the OpenVMS
privilege BYPASS, uses the USER and USING clauses to attach to the
database as user rhonda, SQL shows that user rhonda has the privileges
inherited from the logged-on process heleng, as well as privileges for user
rhonda.

• The SHOW PROTECTION statement displays all of the entries in the
access privilege set for the specified databases, tables, views, columns,
external functions, external procedures, modules, or sequences.

PROCEDURES
Displays information about a specified procedure; either external or stored.

If you do not specify any of the SHOW PROCEDURES attributes (COMMENT,
ID, LANGUAGE, MODULE, OWNER, SOURCE, or PARAMETER), by default
you will see the display for all these options.

You Specify This: SQL Displays Information About:

COMMENT The description of the stored procedure. If none exists,
nothing displays.

ID The unique identification assigned to the procedure.
LANGUAGE The language in which the procedure source is coded.
MODULE The identification number of the module to which a

procedure belongs.
OWNER The owner of the procedure.
PARAMETER Information about the parameters; including the number

of arguments, the data type, and how the parameter is
passed.

SOURCE Displays the source definitions for the specified procedures.

PROFILES
Displays the definition of the specified profile. If you do not specify a wildcard
or list of profile names, SQL displays the names of all the profiles in all
attached databases.

SQL Statements 8–375

SHOW Statement

QUERY CONFIRM
Shows whether or not SQL displays the cost estimates for a query before
executing that query.

QUERY LIMIT
Displays information about the number of rows a query can return and the
amount of time used to optimize a query for execution.

RADIX POINT
Displays the character that will be used as the radix point in output displays.
(The radix point is the symbol that separates units from decimal fractions. For
example, in the number 98.6, the period is the radix point.)

ROLES
Displays the definition of the specified role. SQL displays the role name, ID
number, and any comments associated with the role definition.

SCHEMAS
Displays the names of specified schemas. If you do not specify an alias as
part of a schema name, SQL displays schema information for all the attached
databases. For each database that is not multischema, SQL displays the
message, ‘‘No schemas found’’. For each multischema database, SQL displays
the alias, followed by a list of schemas contained in that database. Each
schema name in the list is preceded by the catalog and alias names.

SEQUENCES
Displays the definition of the specified sequence. SQL displays the sequence
name, ID number, and the sequence attributes.

SQLCA
Displays the contents of the SQL Communications Area (SQLCA). The SQLCA
is a collection of variables that SQL uses to provide information about the
execution of SQL statements to application programs. In interactive SQL, you
can use the SHOW SQLCA statement to learn about the different variables in
the SQLCA. See Appendix C for more information about the SQLCA.

8–376 SQL Statements

SHOW Statement

STATISTICS

Displays simple process statistics for the current process. This command
is used primarily to compare resource usage and elapsed time for different
queries.

The following example shows the output after performing a typical query:

SQL> select count (*)
cont> from employees natural full outer join job_history;

274
1 row selected
SQL> show statistics;

process statistics at 5-MAR-2006 05:57:48.28
elapsed time = 0 00:00:00.16 CPU time = 0 00:00:00.05

page fault count = 430 pages in working set = 22768
buffered I/O count = 26 direct I/O count = 83

open file count = 12 file quota remaining = 7988
locks held = 138 locks remaining = 16776821

CPU utilization = 31.2% AST quota remaining = 995

The statistics are reset after each execution of the SHOW STATISTICS
command.

STORAGE AREAS
Displays information about storage areas. If you do not specify a wildcard or
list of storage area names, SQL displays the names of all the storage areas in
all attached databases.

You Specify This: SQL Displays Information About:

USAGE Usage, object name, storage map, and storage map
partition number for the specified storage area. Partition
numbers are always shown in parentheses, and may be
accompanied by a storage map name. For example, for
an index there is no special map because it is part of
the index. For a table, the map is an extra object and
therefore is reported.

SQL Statements 8–377

SHOW Statement

You Specify This: SQL Displays Information About:

ATTRIBUTES Storage area type, access, page format, page size, storage
area file, storage area allocation, storage area extent
minimum and maximum, storage area extent percent,
snapshot file, snapshot allocation, snapshot extent
minimum and maximum, snapshot extent percent,
whether extents are enabled or disabled, and the locking
level for the specified storage area.

STORAGE MAPS
Displays information about storage maps. If you do not specify a wildcard or
list of storage map names, SQL displays the names of all the storage maps in
all attached databases.

You Specify This: SQL Displays Information About:

PARTITIONS Storage map partitions showing the partition name,
number and the name of the storage area used for the
partition

SYNONYMS
Displays information about the specified synonyms. If you do not specify any
aliases in the synonym names that you specify, SQL displays this information
about all attached databases. The name of the target object, possibly another
synonym, is displayed.

SYSTEM
ALL
Controls whether SQL displays system-defined domains, indexes, storage
maps, tables, or views in the SHOW DOMAINS, SHOW FUNCTIONS, SHOW
INDEXES, SHOW MODULES, SHOW STORAGE MAPS, SHOW TABLES,
SHOW TRIGGERS, and SHOW VIEWS statements.

• If you do not specify either SYSTEM or ALL, the display includes only
user-defined elements.

• If you specify SYSTEM, the display includes elements created for use by
the database system, or layered applications such as the OCI Services
component of SQL/Services.

• If you specify ALL, the display includes both user-defined and system-
defined elements.

8–378 SQL Statements

SHOW Statement

TABLES
Displays information about tables and views. If you do not specify a wildcard
or list of table and view names, SQL displays the names of all the tables and
views in all attached databases.

If you do not specify any of the SHOW TABLES options (COLUMNS,
COMMENT, CONSTRAINTS, INDEXES, STORAGE MAPS, or TRIGGERS),
by default you will see the display for all these options including the character
set for each column of the specified table.

You Specify This: SQL Displays Information About:

COLUMNS Each column name, data type, and domain name for the
specified tables.

COMMENT Comments for the specified tables.
CONSTRAINTS Constraints for the specified tables and the constraints

referencing the specified tables. The display shows the
name and type of each constraint, its evaluation time, and
its source definition.

INDEXES Indexes for the specified tables. The display shows the
name and type of each index, if duplicates are allowed,
and if compression is enabled or disabled.

STORAGE MAPS Names of the storage maps for the specified tables.
TRIGGERS Information about triggers. If you do not specify a

wildcard or a trigger name, SQL displays the names of
all the triggers in all attached databases.

TO identifier-ansi-style
TO PUBLIC
Specifies the identifiers for the new or modified access privilege set entry.
Specifying PUBLIC is equivalent to a wildcard specification of all user
identifiers.

TRANSACTION
Displays the characteristics of the current transaction or, if there is no active
transaction, the characteristics specified in the last DECLARE TRANSACTION
statement. For each database within the scope of the transaction, SQL displays
the following:

• Transaction

• Tables specified in the RESERVING clause of the DECLARE
TRANSACTION or SET TRANSACTION statement

SQL Statements 8–379

SHOW Statement

• Share mode and lock type for each of those tables

• If fast commit processing is enabled

In addition, the SHOW TRANSACTION statement displays transaction
information returned by the base database system about the transaction, such
as whether or not the transaction is active.

TRIGGERS
Displays information about the specified trigger. If you do not specify a
wildcard or list of trigger names, SQL displays the names of all the triggers in
all attached databases.

USERS
Displays the definition of the specified database user. SQL displays the
database user name (such as defined by the CREATE USER statement), how
the user will be authenticated (currently, only through the operating system),
whether the account is locked or unlocked, and any comments associated with
the user definition.

USERS GRANTING
Displays all the users who gave a particular privilege to a particular user. This
statement displays the privileges that need to be revoked to take a privilege
away from the user, either directly or indirectly.

USERS WITH
Displays all the users who received a particular privilege from a particular
user, including all the users who indirectly received privileges. This is also the
list of users who lose a particular privilege when it is taken away from any
users who granted the privilege.

VARIABLES
Displays information about declared variables.

VERSIONS
Displays the version of SQL and the underlying software components.

VIEWS
Displays information about views. If you do not specify a wildcard or list of
view names, SQL displays the names of all the views in all attached databases.

If you do not specify any of the SHOW VIEW options (COLUMNS, COMMENT,
or SOURCE), by default you will see the display for all these options.

8–380 SQL Statements

SHOW Statement

You Specify This: SQL Displays Information About:

COLUMNS Each column name, data type, and domain name for the
specified views.

COMMENT Comments for the specified views.
SOURCE Source definitions for the specified views.

WARNING MODE
Displays the default setting for warning messages. If WARNING MODE is set
to ON, SQL flags statements containing obsolete SQL syntax. Obsolete syntax
is syntax that was allowed in previous versions of SQL but has changed.
Oracle Rdb recommends that you avoid using such syntax because it may not
be supported in future versions. By default, SQL displays a warning message
after any statement containing obsolete syntax (WARNING MODE ON).

To suppress messages about obsolete syntax, use the SET WARNING
NODEPRECATE statement.

Usage Notes

• The SET DISPLAY NO COMMENT statement will disable the display of
COMMENT information by all SHOW commands.

• If the database default character set and the national character set for the
database differ from the session character sets, the SHOW ALIASES and
SHOW DATABASES statements display the character sets for the specified
database.

• If the character set of a domain, parameter, or table is different than the
database default character set, the SHOW statements display the character
set of the specified domain or table. Otherwise, the display of the character
set information is suppressed.

• The SHOW INDEXES statement displays the size of the key for the
specified index.

• If you attach to the same database twice, SHOW statements may fail with
a deadlock error. You can avoid this error by issuing a COMMIT statement.

• If you use the ALTER TABLE statement to change the order in which
columns are displayed, that ordering is also reflected when you issue a
SHOW TABLE statement.

• If you issue a SHOW TABLES (CONSTRAINTS) statement, it indicates
whether or not the constraint has been disabled.

SQL Statements 8–381

SHOW Statement

• If you issue a SHOW TRIGGERS statement, it indicates whether or not
the trigger has been disabled.

• The following usage notes apply to synonyms only:

If neither synonym name nor asterisk (*) is provided, then a list of
all synonyms will be displayed with the type of object. If the word
"synonym" appears in the description, then the source of this synonym
is another synonym. In this case, use SHOW SYNONYM on the source
object to get more information, otherwise use the appropriate SHOW
statement for the named object.

If an asterisk (*) or a synonym name is specified then the synonym, its
comment and details about the source object are displayed.

If a synonym is defined for a table, view, sequence, domain, module,
procedure or function, then a SHOW for that type of object will also list
the defined synonyms.

• The following SHOW commands allow the specified name to contain
wildcard patterns that include "%", "_", and "\" (as the escape character)
in order to select a subset of object names: SHOW COLLATING
SEQUENCE, SHOW DOMAINS, SHOW FUNCTIONS, SHOW INDEXES,
SHOW MODULES, SHOW OUTLINES, SHOW PROCEDURES, SHOW
PROFILES, SHOW ROLES, SHOW SEQUENCES, SHOW STORAGE
MAPS, SHOW SYNONYMS, SHOW TABLES, SHOW TRIGGERS, SHOW
USERS, and SHOW VIEWS.

For instance, the following query will display all tables with the string
"JOB" in the name.

SQL> show table (comment) %JOB%
Information for table CURRENT_JOB

Comment on table CURRENT_JOB:
View to provide the current job for employees

Information for table JOBS

Comment on table JOBS:
Possible jobs in the company

Information for table JOB_HISTORY

Comment on table JOB_HISTORY:
Employment history within the company

8–382 SQL Statements

SHOW Statement

SQL>

Note

This support is not currently available for multischema databases.

Refer to the documentation on the LIKE clause for information on the
wildcard characters "%" and "_". For SHOW commands, the escape
character is defined implicitly as "\".

• The following SHOW commands allow synonyms to be used to identify
the object to be displayed: SHOW DOMAINS, SHOW FUNCTIONS,
SHOW MODULES, SHOW PROCEDURES, SHOW SEQUENCES, SHOW
TABLES, and SHOW VIEWS.

Note

This support is not currently available for multischema databases.

Examples

Example 1: Using the SHOW statement displays

The following log file from an interactive SQL session illustrates some of the
arguments for the SHOW statement:

SQL> -- Show the session character sets.
SQL> --
SQL> SHOW CHARACTER SETS;
Default character set is DEC_MCS
National character set is DEC_MCS
Identifier character set is DEC_MCS
Literal character set is DEC_MCS
Display character set is UNSPECIFIED
SQL> --
SQL> -- Attach to the database and show database character sets.
SQL> --
SQL> ATTACH ’FILENAME MIA_CHAR_SET’;
SQL> SHOW CHARACTER SETS;
Default character set is DEC_MCS
National character set is DEC_MCS
Identifier character set is DEC_MCS
Literal character set is DEC_MCS
Display character set is UNSPECIFIED

SQL Statements 8–383

SHOW Statement

Alias RDB$DBHANDLE:
Identifier character set is DEC_KANJI
Default character set is DEC_KANJI
National character set is KANJI

SQL> --
SQL> -- Attach to the second database and show character sets of both.
SQL> --
SQL> ATTACH ’ALIAS MIA1 FILENAME MIA_CHAR_SET’;
SQL> SHOW CHARACTER SETS;
Default character set is DEC_MCS
National character set is DEC_MCS
Identifier character set is DEC_MCS
Literal character set is DEC_MCS
Display character set is UNSPECIFIED

Alias RDB$DBHANDLE:
Identifier character set is DEC_KANJI
Default character set is DEC_KANJI
National character set is KANJI

Alias MIA1:
Identifier character set is DEC_KANJI
Default character set is DEC_KANJI
National character set is KANJI

SQL> --
SQL> -- SHOW ALIAS examples.
SQL> --
SQL> SHOW ALIAS;
Default alias:

Oracle Rdb database in file MIA_CHAR_SET
Alias MIA1:

Oracle Rdb database in file MIA_CHAR_SET
SQL> SHOW ALIAS MIA1;
Alias MIA1:

Oracle Rdb database in file MIA_CHAR_SET
Multischema mode is disabled
Default character set is DEC_KANJI
National character set is KANJI
Identifier character set is DEC_KANJI
Number of users: 50
Number of nodes: 16
Buffer Size (blocks/buffer): 6
Number of Buffers: 20
Number of Recovery Buffers: 20
Snapshots are Enabled Immediate

.

.

.
ACL based protections

Storage Areas in database with alias MIA1
RDB$SYSTEM Default and list storage area

Journals in database with alias MIA1

8–384 SQL Statements

SHOW Statement

No Journals Found
Cache Objects in database MIA1

No Caches Found

SQL> --
SQL> -- SHOW CONNECTIONS examples.
SQL> --
SQL> CONNECT TO ’ALIAS MIA1 FILENAME MIA_CHAR_SET’ AS ’TEST’;
SQL> SHOW CONNECTIONS;
RDB$DEFAULT_CONNECTION
-> TEST
SQL> SHOW CONNECTIONS DEFAULT;
Connection: RDB$DEFAULT_CONNECTION
Default alias is RDB$DBHANDLE
Default catalog name is RDB$CATALOG
Default schema name is SMITH
Dialect: SQLV40

.

.

.
Default character set is DEC_MCS
National character set is DEC_MCS
Identifier character set is DEC_MCS
Literal character set is DEC_MCS
Display character set is UNSPECIFIED

Alias RDB$DBHANDLE:
Identifier character set is DEC_KANJI
Default character set is DEC_KANJI
National character set is KANJI

Alias MIA1:
Identifier character set is DEC_KANJI
Default character set is DEC_KANJI
National character set is KANJI

SQL Statements 8–385

SHOW Statement

SQL> SHOW CONNECTIONS TEST;
Connection: TEST
Default alias is RDB$DBHANDLE
Default catalog name is RDB$CATALOG
Default schema name is SMITH
Dialect: SQLV40
Default character unit: OCTETS
Keyword Rules: SQLV40
View Rules: SQLV40
Default DATE type: DATE VMS
Quoting Rules: SQLV40
Optimization Level: DEFAULT
Hold Cursors default: WITH HOLD PRESERVE NONE
Quiet commit mode: OFF
Compound transactions mode: EXTERNAL
Default character set is DEC_MCS
National character set is DEC_MCS
Identifier character set is DEC_MCS
Literal character set is DEC_MCS
Display character set is UNSPECIFIED

Alias MIA1:
Identifier character set is DEC_KANJI
Default character set is DEC_KANJI
National character set is KANJI

SQL> --
SQL> CONNECT TO ’ALIAS MIA1 FILENAME MIA_CHAR_SET’ AS ’test1’;
SQL> --
SQL> -- You must set quoting rules to the SQL99 environment and use
SQL> -- double quotation marks (") to display the settings of the
SQL> -- ’test1’ connection or use SHOW CONNECTIONS CURRENT.
SQL> --
SQL> SHOW CONNECTIONS;
RDB$DEFAULT_CONNECTION
TEST
-> test1
SQL> SHOW CONNECTIONS test1;
Connection: TEST1
%SQL-F-NOSUCHCON, There is not an active connection by that name
SQL> SET QUOTING RULES ’SQL99’;
SQL> SHOW CONNECTIONS "test1";
Connection: test1
Default alias is RDB$DBHANDLE
Default catalog name is RDB$CATALOG
Default schema name is SMITH
Dialect: SQLV40
Default character unit: OCTETS
Keyword Rules: SQLV40
View Rules: SQLV40
Default DATE type: DATE VMS
Quoting Rules: ANSI/ISO

8–386 SQL Statements

SHOW Statement

Optimization Level: DEFAULT
Hold Cursors default: WITH HOLD PRESERVE NONE
Quiet commit mode: OFF
Compound transactions mode: EXTERNAL
Default character set is DEC_MCS
National character set is DEC_MCS
Identifier character set is DEC_MCS
Literal character set is DEC_MCS
Display character set is UNSPECIFIED

Alias MIA1:
Identifier character set is DEC_KANJI
Default character set is DEC_KANJI
National character set is KANJI

SQL> SET CONNECT DEFAULT;
SQL> --
SQL> -- SHOW DATABASES examples.
SQL> --
SQL> SHOW DATABASES;
%SQL-I-SPELLCORR, identifier DATABASES replaced with DATABASE
Default alias:

Oracle Rdb database in file MIA_CHAR_SET
Alias MIA1:

Oracle Rdb database in file MIA_CHAR_SET
SQL> SHOW DATABASE RDB$DBHANDLE;
Default alias:

Oracle Rdb database in file MIA_CHAR_SET
Multischema mode is disabled
Default character set is DEC_KANJI
National character set is KANJI
Identifier character set is DEC_KANJI
Number of users: 50
Number of nodes: 16
Buffer Size (blocks/buffer): 6
Number of Buffers: 20
Number of Recovery Buffers: 20
Snapshots are Enabled Immediate

.

.

.
ACL based protections

Storage Areas in database with filename MIA_CHAR_SET
RDB$SYSTEM Default and list storage area

Journals in database with filename MIA_CHAR_SET
No Journals Found

Cache Objects in database with filename MIA_CHAR_SET
No Caches Found

SQL Statements 8–387

SHOW Statement

SQL> --
SQL> -- SHOW DOMAINS example.
SQL> --
SQL> SHOW DOMAINS;
User domains in database with filename MIA_CHAR_SET
No Domains Found
User domains in database with alias MIA1
No Domains Found

SQL> --
SQL> -- SHOW TABLES example.
SQL> --
SQL> SHOW TABLES;
User tables in database with filename MIA_CHAR_SET

COLOURS
User tables in database with alias MIA1

MIA1.COLOURS
SQL> SHOW TABLE (COLUMNS) COLOURS;
Information for table COLOURS

Columns for table COLOURS:
Column Name Data Type Domain
----------- --------- ------
ENGLISH CHAR(8)
DEC_MCS 8 Characters, 8 Octets

FRENCH CHAR(8)
ISOLATIN9 8 Characters, 8 Octets

JAPANESE CHAR(8)
SHIFT_JIS 4 Characters, 8 Octets

ROMAJI CHAR(16)
KATAKANA CHAR(8)
KATAKANA 8 Characters, 8 Octets

HINDI CHAR(8)
DEVANAGARI 8 Characters, 8 Octets

GREEK CHAR(8)
ISOLATINGREEK 8 Characters, 8 Octets

ARABIC CHAR(8)
ISOLATINARABIC 8 Characters, 8 Octets

RUSSIAN CHAR(8)
ISOLATINCYRILLIC 8 Characters, 8 Octets

8–388 SQL Statements

SHOW Statement

SQL> --
SQL> -- SHOW INDEXES example.
SQL> --
SQL> SHOW INDEXES;
User indexes in database with filename MIA_CHAR_SET

COLOUR_INDEX
User indexes in database with alias MIA1

MIA1.COLOUR_INDEX
SQL> SHOW INDEXES COLOUR_INDEX;
Indexes on table COLOURS:
COLOUR_INDEX with column JAPANESE
Duplicates are allowed
Type is Sorted
Key suffix compression is DISABLED

SQL Statements 8–389

SHOW Statement

Example 2: Showing features that internationalize your terminal session

The following example displays SHOW statements that let you see the values
for the SET statements dealing with internationalization:

SQL> --
SQL> -- First, use the SET statement to specify nondefault values.
SQL> --
SQL> SET CURRENCY SIGN ’£’
SQL> --
SQL> SET DATE FORMAT TIME 15
SQL> --
SQL> SET DIGIT SEPARATOR ’.’
SQL> --
SQL> SET LANGUAGE GERMAN
SQL> --
SQL> SET RADIX POINT ’,’
SQL> --
SQL> -- Now look at the SHOW displays.
SQL> --
SQL> SHOW CURRENCY SIGN
Currency sign is ’£’.
SQL> --
SQL> SHOW DATE FORMAT
Date format is TIME 15.
SQL> --
SQL> SHOW DIGIT SEPARATOR
Digit separator is ’.’.
SQL> --
SQL> SHOW LANGUAGE
Language is GERMAN.

Example 3: Showing the setting for nonstandard syntax flagging

SQL> SHOW FLAGGER MODE
The flagger mode is OFF
SQL> SET FLAGGER SQL92_ENTRY ON
SQL> SHOW FLAGGER MODE
%SQL-I-NONSTASYN92E, Nonstandard SQL92 Entry-level syntax
The SQL92 Entry-level flagger mode is ON

8–390 SQL Statements

SHOW Statement

Example 4: Showing after-image journal files

The following example displays journal information:

SQL> ATTACH ’FILENAME SAMPLE’;
SQL> SHOW JOURNAL
Journals in database with filename SAMPLE

AIJ_ONE
AIJ_TWO

SQL> SHOW JOURNAL *
Journals in database with filename SAMPLE

AIJ_ONE
Journal File: DISK1:[DOCS]AIJ1.AIJ;1
Backup File: DISK1:[DOCS.AIJS]AIJ1.AIJ;

AIJ_TWO
Journal File: DISK1:[DOCS]AIJ2.AIJ;1
Backup File: DISK1:[DOCS.AIJS]AIJ2.AIJ;
Edit String: (’$’+HOUR+MINUTE+’_’+MONTH+DAY+’_’+SEQUENCE)

Example 5: Showing storage area usage and attribute information

The following example displays storage area information:

SQL> -- Display the usage of storage area TEST_AREA and JOBS
SQL> --
SQL> SHOW STORAGE AREAS (USAGE) TEST_AREA
No database objects use Storage Area TEST_AREA
SQL> SHOW STORAGE AREAS (USAGE) JOBS

Database objects using Storage Area JOBS:
Usage Object Name Map / Partition
---------------- ------------------------------- -------------------------------
Storage Map JOBS JOBS_MAP (1)
SQL> --
SQL> -- Display the attributes of storage area JOBS.
SQL> --
SQL> SHOW STORAGE AREAS (ATTRIBUTES) JOBS

SQL Statements 8–391

SHOW Statement

JOBS
Access is: Read write
Page Format: Mixed
Page Size: 2 blocks
Area File: DISK1:[DOCS.WORK]JOBS.RDA;1
Area Allocation: 402 pages
Extent: Enabled
Area Extent Minimum: 99 pages
Area Extent Maximum: 9999 pages
Area Extent Percent: 20 percent
Snapshot File: DISK1:[DOCS.WORK]JOBS.SNP;1
Snapshot Allocation: 100 pages
Snapshot Extent Minimum: 99 pages
Snapshot Extent Maximum: 9999 pages
Snapshot Extent Percent: 20 percent
Locking is Row Level
No Cache Associated with Storage Area
Thresholds are (70, 85, 95)

Example 6: Showing query outline information

The following example displays query outline information:

SQL> SHOW OUTLINE MY_OUTLINE
MY_OUTLINE

Source:

create outline MY_OUTLINE
id ’09ADFE9073AB383CAABC4567BDEF3832’
mode 0
as (

query (
subquery (
EMPLOYEES 0 access path index EMP_LAST_NAME
join by cross to

DEGREES 1 access path index DEG_EMP_ID
)

)
)

compliance optional ;

Example 7: Showing privileges

The following example demonstrates the SHOW PRIVILEGES statement:

8–392 SQL Statements

SHOW Statement

SQL> ! Attach as the logged on user, [sql,heleng]
SQL> ATTACH ’FILENAME personnel’;
SQL> SHOW PRIVILEGES ON DATABASE RDB$DBHANDLE
Privileges on Alias RDB$DBHANDLE

(IDENTIFIER=[sql,heleng],ACCESS=SELECT+INSERT+UPDATE+DELETE+SHOW+CREATE+
ALTER+DROP+DBCTRL+OPERATOR+DBADM+REFERENCES+SECURITY+DISTRIBTRAN)

SQL> !
SQL> ! Attach as user rhonda.
SQL> ATTACH ’FILENAME personnel USER ’’rhonda’’ USING ’’newhampshire’’’;
SQL> ! User rhonda has SELECT privilege.
SQL> SHOW PRIVILEGES ON DATABASE RDB$DBHANDLE
Privileges on Alias RDB$DBHANDLE

(IDENTIFIER=[sql,rhonda],ACCESS=SELECT)
SQL> EXIT
$!
$! On OpenVMS, give the process the BYPASS privilege, which
$! gives you access to any database object.
$ SET PROC/PRIVILEGES=BYPASS
$ SQL$
SQL> ! Attach as user rhonda.
SQL> ATTACH ’FILENAME personnel USER ’’rhonda’’ USING ’’newhampshire’’’;
SQL> !
SQL> ! User rhonda now has all privileges, inherited from the logged-on
SQL> ! process.
SQL> SHOW PRIVILEGES ON DATABASE RDB$DBHANDLE
Privileges on Alias RDB$DBHANDLE

(IDENTIFIER=[sql,rhonda],ACCESS=SELECT+INSERT+UPDATE+DELETE+SHOW+CREATE+
ALTER+DROP+DBCTRL+OPERATOR+DBADM+REFERENCES+SECURITY+DISTRIBTRAN)

Example 8: Showing modules, stored procedures, and stored functions

SQL> --
SQL> -- Show the modules in the database.
SQL> --
SQL> ATTACH ’FILENAME mf_personnel’;
SQL> SHOW MODULES
Modules in database with filename mf_personnel
Module name is: UTILITY_FUNCTIONS

SQL> SHOW MODULES utility_functions
Module name is: UTILITY_FUNCTIONS
Header:
utility_functions

language sql
No description found.
Owner is:
Module ID is: 1
Functions/Procedures in Module:

Function ABS
Function MDY
Procedure TRACE_DATE

SQL Statements 8–393

SHOW Statement

SQL> --
SQL> -- Show the procedures and functions of the module.
SQL> --
SQL> SHOW MODULES (PROCEDURES) utility_functions
Module name is: UTILITY_FUNCTIONS
Functions/Procedures in Module:

Function ABS
Function MDY
Procedure TRACE_DATE

SQL> SHOW PROCEDURE trace_date
Procedure name is: TRACE_DATE
Procedure ID is: 3
Source:
trace_date (:dt date);

begin
trace :dt;
end

No description found.
Module name is: UTILITY_FUNCTIONS
Module ID is: 1
Number of parameters is: 1

Parameter Name Data Type
-------------- ---------

DT DATE VMS
Parameter position is 1
Parameter is IN (read)
Parameter is passed by REFERENCE

SQL> SHOW FUNCTIONS abs
Function name is: ABS
Function ID is: 2
Source:
abs (in :arg integer) returns integer

comment ’Returns the absolute value of an integer’;
begin
return case
when :arg < 0 then - :arg
else :arg
end;
end

Comment: Returns the absolute value of an integer
Module name is: UTILITY_FUNCTIONS
Module ID is: 1
Number of parameters is: 1

Parameter Name Data Type
-------------- ---------

8–394 SQL Statements

SHOW Statement

INTEGER
Function result datatype
Return value is passed by VALUE

ARG INTEGER
Parameter position is 1
Parameter is IN (read)
Parameter is passed by REFERENCE

Example 9: Showing a storage map that defines both horizontal and vertical
record partitioning

SQL> SHOW STORAGE MAP EMPLOYEES_1_MAP2
EMPLOYEES_1_MAP2

For Table: EMP2
Partitioning is: UPDATABLE
Store clause: STORE COLUMNS (EMPLOYEE_ID, LAST_NAME, FIRST_NAME,

MIDDLE_INITIAL, STATUS_CODE)
USING (EMPLOYEE_ID)

IN ACTIVE_AREA_A WITH LIMIT OF (’00399’)
IN ACTIVE_AREA_B WITH LIMIT OF (’00699’)
OTHERWISE IN ACTIVE_AREA_C

STORE COLUMNS (ADDRESS_DATA_1, ADDRESS_DATA_2, CITY,
STATE, POSTAL_CODE)

USING (EMPLOYEE_ID)
IN INACTIVE_AREA_A WITH LIMIT OF (’00399’)
IN INACTIVE_AREA_B WITH LIMIT OF (’00699’)
OTHERWISE IN INACTIVE_AREA_C

STORE IN OTHER_AREA
Compression is: ENABLED
Partition 2: Compression is Enabled
Partition 3: Compression is Enabled

Example 10: Displaying a Sequence

SQL> SHOW SEQUENCE EMPIDS
EMPIDS

Sequence Id: 3
Initial Value: 1
Minimum Value: 1
Maximum Value: 9223372036854775787
Next Sequence Value: 1
Increment by: 1
Cache Size: 20
Order
No Cycle
No Randomize
Comment: Sequence for employee IDs.

SQL Statements 8–395

SHOW Statement

Example 11: Displaying a Role

SQL> SHOW ROLE SECRETARY
SECRETARY

Identified Externally
Comment: Role for the secretarial staff

Example 12: Displaying a User

SQL> SHOW USER NSTEWART
NSTEWART

Identified Externally
Account Unlocked
Comment: Nicholas Stewart

Example 13: Show Details of One Profile

SQL> SHOW PROFILE
Profiles in database with filename SQL$DATABASE

DECISION_SUPPORT
SQL> SHOW PROFILE DECISION_SUPPORT

DECISION_SUPPORT
Comment: limit transactions used by report writers

Transaction modes (read only, no read write)
SQL> ALTER PROFILE DECISION_SUPPORT
cont> default transaction read only;
SQL> SHOW PROFILE DECISION_SUPPORT

DECISION_SUPPORT
Comment: limit transactions used by report writers

Default transaction read only
Transaction modes (read only, no read write)

SQL>

Example 14: Show the Use of Delimited Identifiers for Mixed-Case Names

SQL> CREATE PROFILE "Decision_Support"
cont> COMMENT IS ’limit transactions used by report writers’
cont> TRANSACTION MODES (NO READ WRITE, READ ONLY);
SQL> SHOW PROFILE
Profiles in database with filename SQL$DATABASE

Decision_Support
SQL> SHOW PROFILE Decision_Support
No Users found
SQL> SHOW PROFILE "Decision_Support"

Decision_Support
Comment: limit transactions used by report writers

Transaction modes (read only, no read write)

8–396 SQL Statements

SHOW Statement

Example 15: Displaying Synonyms

SQL> SHOW SYNONYMS
Synonyms in database with filename SQL$DATABASE

C_SAL View CURRENT_SALARY
E Table synonym EMPS
EMPS Table EMPLOYEES
ID_NUMBER Domain ID_DOM

SQL> SHOW SYNONYMS ID_NUMBER
ID_NUMBER
for domain ID_DOM
Comment: support the old name for this domain

SQL> SHOW VIEWS

User tables in database with filename SQL$DATABASE
CURRENT_INFO A view.
CURRENT_JOB A view.
CURRENT_SALARY A view.
C_SAL A synonym for view CURRENT_SALARY

Example 16: Using Synonyms to Identify Objects

This example creates a sequence and a synonym for a sequence, and uses the
SHOW SEQUENCE command with the synonym.

SQL> create sequence department_id_sequence;
SQL> create synonym dept_id_s for department_id_sequence;
SQL> show sequence
Sequences in database with filename personnel

DEPARTMENT_ID_SEQUENCE
DEPT_ID_S A synonym for sequence DEPARTMENT_ID_SEQUENCE

SQL> show sequence DEPT_ID_S
DEPT_ID_S A synonym for sequence DEPARTMENT_ID_SEQUENCE

Sequence Id: 1
Initial Value: 1
Minimum Value: 1
Maximum Value: 9223372036854775787
Next Sequence Value: 1
Increment by: 1
Next Sequence Value: 1
Increment by: 1
Cache Size: 20
No Order
No Cycle
No Randomize
Wait
SQL>

SQL Statements 8–397

SIGNAL Control Statement

SIGNAL Control Statement

Passes the signaled SQLSTATE status parameter back to the application or
SQL interface and terminates the current routine and all calling routines.

Environment

You can use the SIGNAL statement in a compound statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

SIGNAL value-expr
SQLSTATE VALUE ’string-literal’

(signal-arg)

Arguments

signal-arg
Specifies a value expression. The specified value is converted to a
CHARACTER(80) CHARACTER SET UNSPECIFIED string and returned
as a secondary message to the client application. If the value expression
converts to a character string longer than 80 characters, it is truncated.

You can use the sql_get_error_text routine to extract the signal-arg text in an
application.

string-literal
A quoted string literal which represents the SQLSTATE value.

value-expr
Expects a character value expression which is used as the SQLSTATE status
parameter. Any provided value expression is converted to a CHAR(5) value
which is passed to SIGNAL.

8–398 SQL Statements

SIGNAL Control Statement

See Section 2.6 for more information on value expressions. See Appendix C for
more information about SQLSTATE.

Usage Notes

• The current routine and all calling routines and triggers are terminated
and the signaled SQLSTATE status parameter is passed to the application.

• The SQLSTATE value is mapped to the SQLCODE status parameter.

If the SQLSTATE status parameter value maps to more than one
SQLCODE value, the SQLCODE is set to the value -1042.

• The contents of the SQLSTATE status parameter string are defined by
the ANSI/ISO SQL Standard and must contain only Latin capital letters
(A through Z) or Arabic digits (0 through 9). Any string longer than 5
characters is truncated. Any string shorter than 5 characters is space-filled
which causes an error to be returned. The character set for the string must
be ASCII, DEC_MCS, ISOLATIN1, or ISOLATIN9.

• A numeric value expression used with SIGNAL is converted to a
character string with possible leading spaces. The leading spaces are
considered invalid. For example, SIGNAL 02000 is considered invalid, but
SIGNAL ’02000’ is acceptable.

• If the SQLSTATE string contains invalid characters, Oracle Rdb generates
the following error:

%RDB-F-CONVERT_ERROR, invalid or unsupported data conversion
-RDMS-E-SQLSTATE_ILLCH, illegal character in SQLSTATE string passed to
SIGNAL routine

• If the character value expression results in a null value, Oracle Rdb
generates the following error:

%RDB-F-CONVERT_ERROR, invalid or unsupported data conversion
-RDMS-E-SQLSTATE_NULL, unexpected NULL passed to SIGNAL routine

• The error message returned by Oracle Rdb includes the name of the
routine or trigger that called SIGNAL. If the routine is an unnamed
compound statement or multistatement procedure, the error message
specifies "(unnamed)". For example:

SQL Statements 8–399

SIGNAL Control Statement

%RDB-F-SIGNAL_SQLSTATE, routine "(unnamed)" signaled SQLSTATE "22028"

Note

You can provide a name for a compound statement using the
OPTIMIZE AS clause in the BEGIN or PRAGMA clause.

• SQL applications can examine the SQLSTATE variable to see what was
signaled by SQL or an application SIGNAL call.

Examples

Example 1: Using the SIGNAL and RETURN statements, multiline comments,
and stored functions

The example uses a table, NEXT_KEY_TABLE, to maintain a list of key names
and their current values. In this example, only a single key is created with the
name EMPLOYEE_ID. Each time the function is called, it fetches the value
from the NEXT_KEY_TABLE and returns the next value. If the named key
is not found, an error is returned (SQLSTATE 22023 is defined as "invalid
parameter value").

SQL> CREATE DOMAIN key_name
cont> CHAR(31)
cont> CHECK (VALUE IS NOT NULL)
cont> NOT DEFERRABLE;
SQL> --
SQL> CREATE TABLE next_key_table (
cont> next_key_val INTEGER NOT NULL,
cont> next_key_name key_name UNIQUE);
SQL> --
SQL> INSERT INTO next_key_table (next_key_name, next_key_val)
cont> VALUES (’EMPLOYEE_ID’, 0);
1 row inserted
SQL> --
SQL> CREATE MODULE tools
cont> LANGUAGE SQL
cont> FUNCTION next_key (IN :key_name key_name)
cont> RETURNS INTEGER
cont> COMMENT IS ’This routine fetches the next value of the’/
cont> ’specified entry in the sequence table. The’/
cont> ’passed name is converted to uppercase before’/
cont> ’retrieval (see the DEFAULT clause for compound’/
cont> ’statements). The UPDATE ... RETURNING statement’/
cont> ’is used to fetch the new value after the update.’/
cont> ’If no entry exists, then an error is returned.’;

8–400 SQL Statements

SIGNAL Control Statement

cont> BEGIN
cont> DECLARE :rc, :new_val INTEGER DEFAULT 0;
cont> DECLARE :key_name_upper key_name DEFAULT UPPER(:key_name);
cont> DECLARE :invalid_parameter CONSTANT CHAR(5) = ’22023’;
cont> --
cont> UPDATE next_key_table
cont> SET next_key_val = next_key_val + 1
cont> WHERE next_key_name = :key_name_upper
cont> RETURNING next_key_val
cont> INTO :new_val;
cont> --
cont> GET DIAGNOSTICS :rc = ROW_COUNT;
cont> TRACE ’NEXT_KEY is ’, COALESCE(:new_val, ’NULL’), ’, RC is ’, :rc;
cont> --
cont> IF :rc = 0 THEN
cont> TRACE ’No entry exists for KEY_NAME: ’, :key_name_upper;
cont> SIGNAL :invalid_parameter;
cont> ELSE
cont> TRACE ’Returning new value for ’, :key_name_upper, :new_val;
cont> RETURN :new_val;
cont> END IF;
cont> --
cont> END;
cont> END MODULE;
SQL> --
SQL> CREATE TABLE employee (
cont> employee_id INTEGER,
cont> last_name CHAR(20),
cont> birthday DATE);
SQL> --
SQL> -- Turn on the TRACE flag so we can see the function working.
SQL> --
SQL> SET FLAGS ’TRACE’;
SQL> --
SQL> INSERT INTO employee (employee_id, last_name, birthday)
cont> VALUES (next_key(’EMPLOYEE_ID’), ’Smith’, DATE’1970-1-1’);
~Xt: NEXT_KEY is 1 , RC is 1
~Xt: Returning new value for EMPLOYEE_ID 1
1 row inserted
SQL> --
SQL> INSERT INTO employee (employee_id, last_name, birthday)
cont> VALUES (next_key(’EMPLOYEE_ID’), ’Lee’, DATE’1971-1-1’);
~Xt: NEXT_KEY is 2 , RC is 1
~Xt: Returning new value for EMPLOYEE_ID 2
1 row inserted
SQL> --
SQL> INSERT INTO employee (employee_id, last_name, birthday)
cont> VALUES (next_key(’EMPLOYEE_ID’), ’Zonder’, DATE’1972-1-1’);
~Xt: NEXT_KEY is 3 , RC is 1
~Xt: Returning new value for EMPLOYEE_ID 3
1 row inserted

SQL Statements 8–401

SIGNAL Control Statement

SQL> --
SQL> SELECT * FROM employee ORDER BY EMPLOYEE_ID;
EMPLOYEE_ID LAST_NAME BIRTHDAY

1 Smith 1970-01-01
2 Lee 1971-01-01
3 Zonder 1972-01-01

3 rows selected
SQL> --
SQL> -- Show the error if the unknown key_name is passed.
SQL> --
SQL> INSERT INTO employee (employee_id, last_name, birthday)
cont> VALUES (next_key(’EMPLOYEEID’), ’Zonder’, DATE’1972-1-1’);
~Xt: NEXT_KEY is 0 , RC is 0
~Xt: No entry exists for KEY_NAME: EMPLOYEEID
%RDB-E-SIGNAL_SQLSTATE, routine "NEXT_KEY" signaled SQLSTATE "22023"

Example 2: Specifying a Secondary Error

SQL> BEGIN
SQL> SIGNAL SQLSTATE ’RR000’ (’ Compound Statement Failed’);
cont> END;
%RDB-E-SIGNAL_SQLSTATE, routine "(unnamed)" signaled SQLSTATE "RR000"
-RDB-I-TEXT, Compound Statement Failed

8–402 SQL Statements

Simple Statement

Simple Statement

Includes a single SQL statement in a module procedure or in an embedded
host language program. The statement can include a single executable SQL
statement. A module procedure or embedded procedure that contains a simple
statement is called a simple-statement procedure.

Table 1-1 lists all the SQL statements allowed in a simple statement.

Environment

A simple statement is valid either in a procedure of an SQL module file or in
an embedded host language program prefixed by the keywords EXEC SQL:

• Module SQL

See Section 3.2 for information about using simple statements in module
procedures in an SQL module file.

• Embedded SQL

See Section 4.2 for information about using simple statements in embedded
procedures in host language programs.

Format

simple-statement =

SQL statement

Arguments

SQL statement
Specifies a single executable SQL statement.

Executable SQL statements undergo processing during module compile time
but do not execute until the program runs. SQL executes the simple statement
when the procedure in which it is embedded is called by a host language
module. (Nonexecutable SQL statements are those that SQL processes
completely when it compiles an SQL module but are not executed at run time.)
See Section 1.4 for information about which SQL statements are executable.

The SQL statement must use names specified in the procedure’s formal
parameters wherever it refers to parameters.

SQL Statements 8–403

Simple Statement

Usage Notes

• A simple statement can contain only one SQL statement for each
procedure; however, you can include more than one statement in
a procedure if you specify a compound statement. (A module or
embedded procedure that contains a compound statement is called a
multistatement procedure.) Currently, SQL imposes fewer restrictions
on simple-statement procedures than on multistatement procedures, but
multistatement procedures execute more efficiently. Oracle Rdb suggests
that you use multistatement procedures wherever possible. See the
Compound Statement for more information.

• If the statement is contained within a procedure, it must end with a
semicolon.

Examples

Example 1: A simple statement using interactive SQL

SQL> ALTER DATABASE FILENAME mf_personnel
cont> JOURNAL IS DISABLED;

8–404 SQL Statements

START TRANSACTION Statement

START TRANSACTION Statement

Starts a transaction using the specified attributes. If DEFAULT is specified,
then the attributes are derived from the user’s profile.

Environment

You can use the START TRANSACTION statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

START DEFAULT TRANSACTION
TRANSACTION

transaction-mode
isolation-level

,

transaction-mode =

READ ONLY
READ WRITE

isolation-level =

ISOLATION LEVEL READ COMMITTED
REPEATABLE READ
SERIALIZABLE

Arguments

DEFAULT
If the keyword DEFAULT is used, the user-specific default transaction is
started. This default is defined in the profile for the current session user. If
none is specified, a READ ONLY transaction will be started.

SQL Statements 8–405

START TRANSACTION Statement

SQL> CREATE PROFILE READ_USERS
cont> DEFAULT TRANSACTION READ ONLY WAIT 10;
SQL> ALTER USER JONES PROFILE READ_USERS;

A START DEFAULT TRANSACTION statement executed by JONES will start
a READ ONLY WAIT 10 transaction.

For information on profiles see the ALTER and CREATE PROFILE statements.

ISOLATION LEVEL READ COMMITTED
ISOLATION LEVEL REPEATABLE READ
ISOLATION LEVEL SERIALIZABLE
Defines the degree to which database operations in an SQL transaction are
affected by database operations in concurrently executing transactions. It
determines the extent to which the database protects the consistency of your
data.

Oracle Rdb supports isolation levels READ COMMITTED, REPEATABLE
READ, and SERIALIZABLE. When you use SQL with Oracle Rdb databases,
by default, SQL executes a transaction at isolation level SERIALIZABLE.
The higher the isolation level, the more isolated a transaction is from other
currently executing transactions. Isolation levels determine the type of
phenomena that are allowed to occur during the execution of concurrent
transactions. Two phenomena define SQL isolation levels for a transaction:

• Nonrepeatable read

Allows the return of different results within a single transaction when an
SQL operation reads the same row in a table twice. Nonrepeatable reads
can occur when another transaction modifies and commits a change to the
row between transaction reads.

• Phantom

Allows the return of different results within a single transaction when an
SQL operation retrieves a range of data values (or similar data existence
check) twice. Phantoms can occur if another transaction inserted a new
record and committed the insertion between executions of the range
retrieval.

Each isolation level differs in the phenomena it allows. Table 8–12 shows the
phenomena permitted for the isolation levels that you can explicitly specify
with the START TRANSACTION statement.

8–406 SQL Statements

START TRANSACTION Statement

Table 8–12 Phenomena Permitted at Each Isolation Level

Isolation Level
Nonrepeatable Reads
Allowed?

Phantoms
Allowed?

READ COMMITTED Yes Yes
REPEATABLE READ No Yes
SERIALIZABLE No No

For read-only transactions, which always execute at isolation level
SERIALIZABLE if snapshots are enabled, the database system guarantees
that you will not see changes made by another user before you issue a
COMMIT statement.

See the Oracle Rdb Guide to SQL Programming for further information about
specifying isolation levels in transactions.

READ ONLY
Retrieves a snapshot of the database at the moment the read-only transaction
starts. Other users can update rows in the table you are using, but your
transaction retrieves the rows as they existed at the time the transaction
started. You cannot update, insert, or delete rows, or execute data definition
statements in a read-only transaction with the exception of declaring a local
temporary table or modifying data in a created or declared temporary table.
Read-only transactions are implicitly isolation level serializable.

Because a read-only transaction uses the snapshot (.snp) version of the
database, any changes that other users make and commit during the
transaction are invisible to you. Using a read-only transaction lets you read
data without incurring the overhead of row locking. (You do incur overhead for
keeping a snapshot of the tables you specify in the RESERVING clause, but
this overhead is less than that of a comparable read/write transaction.)

Because of the limited nature of read-only transactions, they are subject to
several restrictions. The Usage Notes describe those restrictions.

READ WRITE
Signals that you want to use the lock mechanisms of SQL for consistency in
data retrieval and update. Read/write is the default transaction. Use the
read/write transaction mode when you need to:

• Insert, update, or delete data

• Retrieve data that is guaranteed to be correct at the moment of retrieval

• Use SQL data definition statements

SQL Statements 8–407

START TRANSACTION Statement

When you are reading a row in a read/write transaction, no other user can
update that row. Under some circumstances, SQL may lock rows that you are
not explicitly reading.

• If your query is scanning a table without using an index, SQL locks all the
rows in the record stream to maintain isolation level serializable.

• If your query uses indexes, SQL may lock part of an index, which has the
effect of locking several rows.

Usage Notes

• The START TRANSACTION statement is similar to the SET
TRANSACTION statement in operation. That is, you can specify READ
WRITE or READ ONLY transaction modes as well as various isolation
levels.

• The transaction-mode and isolation-level clauses may appear only once in
any START TRANSACTION statement.

• This statement does not support BATCH UPDATE mode, as this is an
Oracle Rdb extension and, therefore, is only supported by SET and
DECLARE TRANSACTION statements.

• Oracle Rdb has extended the START TRANSACTION statement and
allows all transaction options to be omitted. If the transaction-mode is
omitted, it defaults to READ WRITE. If the isolation-level is omitted, it
defaults to ISOLATION LEVEL SERIALIZABLE. Therefore, if all options
are omitted, the transaction defaults to READ WRITE ISOLATION LEVEL
SERIALIZABLE.

• If more than one database is currently attached, a transaction spanning all
databases will be started with the specified or default attributes.

• You cannot use the START TRANSACTION statement in an ATOMIC
compound statement.

• The START TRANSACTION statement may not be executed from a SQL
function or trigger or any stored procedure called from a SQL function or
trigger.

8–408 SQL Statements

START TRANSACTION Statement

Examples

Example 1: Starting a Default Transaction in a Multistatement Procedure or
as a Single Statement

SQL> START DEFAULT TRANSACTION;
SQL>
SQL> BEGIN
cont> COMMIT;
cont> START DEFAULT TRANSACTION;
cont> END;
SQL>
SQL> ROLLBACK;

Example 2: Starting Several Variations of the START TRANSACTION
Statement

SQL> START TRANSACTION READ WRITE,
cont> ISOLATION LEVEL READ COMMITTED;
SQL> COMMIT;
SQL>
SQL> -- Defaults to serializable
SQL> START TRANSACTION READ WRITE;
SQL> COMMIT;
SQL>
SQL> -- Defaults to read write
SQL> START TRANSACTION ISOLATION LEVEL READ COMMITTED;
SQL> ROLLBACK;
SQL>
SQL> -- Defaults to read write serializable
SQL> START TRANSACTION;
SQL>
SQL> BEGIN
cont> COMMIT;
cont> START TRANSACTION
cont> ISOLATION LEVEL READ COMMITTED,
cont> READ WRITE;
cont> END;
SQL> COMMIT;

SQL Statements 8–409

TRACE Control Statement

TRACE Control Statement

Writes values to the trace log file after the trace extended debug flag is set.
The TRACE control statement lets you specify multiple value expressions. It
stores a value in a log file for each value expression it evaluates.

Trace logging can help you debug complex multistatement procedures.

Environment

You can use the TRACE control statement in a compound statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

trace-statement =

TRACE value-expr
,

Arguments

value-expr
Specifies a symbol or string of symbols used to represent or calculate a single
value.

See Section 2.6 for a complete description of the variety of value expressions
that SQL provides.

Usage Notes

• The TRACE control statement has no effect when the debug flag is
undefined.

• The TRACE statement is enabled by one of these methods:

SET FLAGS ’TRACE’ statement

8–410 SQL Statements

TRACE Control Statement

Defining the RDMS$SET_FLAGS logical name including the ’TRACE’
keyword

Defining the RDMS$DEBUG_FLAGS logical name including the Xt
string (note that X is uppercase and t is lowercase)

Output can be redirected using the RDMS$DEBUG_FLAGS_OUTPUT
logical name. See Appendix E and the Oracle Rdb7 Guide to Database
Performance and Tuning for information on logical names.

• You can trace IN, OUT, and INOUT parameters. For example:

SQL> CREATE MODULE m1
cont> LANGUAGE SQL
cont> PROCEDURE p1 (IN :a INTEGER, OUT :b REAL);
cont> BEGIN
cont> SET :b = :a;
cont> TRACE :a, :b;
cont> END;
cont> END MODULE;
SQL> SET FLAGS ’TRACE’;
SQL> DECLARE :res real;
SQL> CALL p1 (10, :res);
~Xt: 10 1.0000000E+01

RES
1.0000000E+01

• If the TRACE statement is activated then queries in the TRACE statement
are merged into the query outline for the procedure. Example 2 in the
Examples section shows a query outline that contains one query when the
TRACE statement is disabled.

• If any TRACE statement contains a subquery, then Oracle Corporation
recommends using two query outlines (if any are required at all), with
different modes in order to run the query with and without TRACE
enabled. That is, when TRACE is enabled, define MODE to match the
TRACE enabled query outlines.

$ DEFINE RDMS$DEBUG_FLAGS_OUTPUT TRACE.DAT
$ DEFINE RDMS$SET_FLAGS "TRACE, MODE(10)"

Alternatively, use the SET FLAGS statement, which allows the TRACE
flag to be enabled and the MODE established from within an interactive
session or through dynamic SQL. This method allows the query to be run
with TRACE enabled or disabled.

• Use the COALESCE function to format NULL expressions. For example,
TRACE COALESCE(LAST_NAME, ’NULL’);.

SQL Statements 8–411

TRACE Control Statement

Examples

Example 1: Tracing a multistatement procedure

SQL> ATTACH ’FILENAME MF_PERSONNEL’;
SQL> SET FLAGS ’TRACE’;
SQL> DECLARE :i INTEGER;
SQL> BEGIN
cont> WHILE :i <= 10
cont> LOOP
cont> TRACE ’:i is’, :i;
cont> SET :i = :i +1;
cont> END LOOP;
cont> END;
~Xt: :i is 0
~Xt: :i is 1
~Xt: :i is 2
~Xt: :i is 3
~Xt: :i is 4
~Xt: :i is 5
~Xt: :i is 6
~Xt: :i is 7
~Xt: :i is 8
~Xt: :i is 9
~Xt: :i is 10

Example 2: Generating a query outline when the TRACE statement is disabled

SQL> DECLARE :LN CHAR(40);
SQL> SET FLAGS ’NOTRACE’;
SQL> BEGIN
cont> TRACE ’Jobs Held: ’,
cont> (SELECT COUNT(*)
cont> FROM JOB_HISTORY
cont> WHERE EMPLOYEE_ID = ’00201’);
cont> SELECT LAST_NAME
cont> INTO :LN
cont> FROM EMPLOYEES
cont> WHERE EMPLOYEE_ID = ’00201’;
cont> END;

8–412 SQL Statements

TRACE Control Statement

-- Oracle Rdb Generated Outline :
create outline QO_A17FA4B41EF1A68B_00000000
id ’A17FA4B41EF1A68B966C1A0B083BFDD4’
mode 0
as (

query (
-- Select

subquery (
EMPLOYEES 0 access path index EMPLOYEES_HASH
)

)
)

compliance optional ;
SQL>

If the query outline is generated with TRACE enabled, then two queries
appear; the first is for the subquery in the TRACE statement and the other is
for the singleton SELECT statement.

If this second query outline is used at run time with the TRACE statement
disabled, then it cannot be applied to the query. Because the outline was
created with compliance optional, the query outline is abandoned and a new
strategy is calculated. If compliance is mandatory, then the query fails. See
Example 3.

SQL Statements 8–413

TRACE Control Statement

SQL> DECLARE :LN CHAR(40);
SQL> SET FLAGS ’TRACE’;
SQL> BEGIN
cont> TRACE ’Jobs Held: ’,
cont> (SELECT COUNT(*)
cont> FROM JOB_HISTORY
cont> WHERE EMPLOYEE_ID = ’00201’);
cont> SELECT LAST_NAME
cont> INTO :LN
cont> FROM EMPLOYEES
cont> WHERE EMPLOYEE_ID = ’00201’;
cont> END;
-- Oracle Rdb Generated Outline :
create outline QO_A17FA4B41EF1A68B_00000000
id ’A17FA4B41EF1A68B966C1A0B083BFDD4’
mode 0
as (

query (
-- Trace

subquery (
JOB_HISTORY 0 access path index JOB_HISTORY_HASH
)

)
query (

-- Select
subquery (
EMPLOYEES 0 access path index EMPLOYEES_HASH
)

)
)

compliance optional ;
~Xt: Jobs Held: 4
SQL>

Example 3: Using an Outline with Tracing Enabled That Was Created with
Tracing Disabled

This example shows that enabling the TRACE statement may affect query
outlines defined when TRACE was disabled.

8–414 SQL Statements

TRACE Control Statement

SQL> DECLARE :LN CHAR(40);
SQL>
SQL> BEGIN
cont> TRACE ’Jobs Held: ’,
cont> (SELECT COUNT(*)
cont> FROM JOB_HISTORY
cont> WHERE EMPLOYEE_ID = ’00201’);
cont> SELECT LAST_NAME
cont> INTO :LN
cont> FROM EMPLOYEES
cont> WHERE EMPLOYEE_ID = ’00201’;
cont> END;
~S: Outline QO_A17FA4B41EF1A68B_00000000 used
~S: Outline/query mismatch; assuming JOB_HISTORY 0 renamed to EMPLOYEES 0
~S: Full compliance with the outline was not possible
Get Retrieval by index of relation EMPLOYEES
Index name EMPLOYEES_HASH [1:1] Direct lookup

SQL Statements 8–415

TRUNCATE TABLE Statement

TRUNCATE TABLE Statement

Deletes the data in a table while still maintaining the metadata definitions of
the table. Advantages include fast deletion of data in uniform areas, and no
change to dependency data.

Environment

You can use the TRUNCATE TABLE statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

TRUNCATE TABLE <table-name>

Arguments

table-name
Specifies the name of the table you want to truncate.

Usage Notes

• The TRUNCATE TABLE statement resets:

– All Indexes

– Any storage maps on the table

– The IDENTITY column sequence

• The TRUNCATE TABLE statement does not:

– Execute any delete triggers

– Invalidate procedures

– Invalidate query outlines and stored routines that refer to the named
table

8–416 SQL Statements

TRUNCATE TABLE Statement

• TRUNCATE is a data definition statement and as such requires exclusive
access to the table.

• You must have DELETE, DROP and CREATE privileges for the table.

• The TRUNCATE TABLE statement fails with an error message if:

– RDB$SYSTEM storage area is set to read-only

– The named table is a view

– The named table has been reserved for data definfition

– The named table is a system table

• The TRUNCATE TABLE statement is not supported on created or declared
local temporary tables.

• All constraints that reference the truncated table are revalidated (as
not deferrable) after the truncate operation to ensure that the database
remains consistent.

If constraint validation fails, the TRUNCATE statement is automatically
rolled back. For example:

SQL> CREATE TABLE test1
cont> (col1 REAL);
SQL>
SQL> CREATE TABLE test2
cont> (col1 REAL,
cont> REFERENCES TEST1 (COL1));
SQL> COMMIT;
SQL>
SQL> INSERT INTO test1 VALUES (1);
1 row inserted
SQL> INSERT INTO test2 VALUES (1);
1 row inserted
SQL> COMMIT;
SQL> TRUNCATE TABLE test1;
-RDB-E-INTEG_FAIL, violation of constraint TEST2_CHECK1 caused operation to
fail
-RDB-F-ON_DB, on database DISK1:[TEST]MF_PERSONNEL.RDB;

• Truncating a table does not delete the workload information collected in
the RDB$WORKLOAD system table. You can delete the obsolete data
with the RMU Delete Optimizer_Statistics command. See the Oracle RMU
Reference Manual for further details.

SQL Statements 8–417

TRUNCATE TABLE Statement

• When a table contains one or more LIST OF BYTE VARYING columns, the
TRUNCATE TABLE statement must read each row in the table and record
the pointers for all LIST values. This list is processed at COMMIT time to
delete the LIST column data. Therefore, the database administrator must
also allow for this time when truncating the table.

Reserving the table for EXCLUSIVE WRITE is recommended because the
dropped LIST columns will require that each row in the table be updated
and set to NULL - it is this action which queues the pointers for commit
time processing. This reserving mode will eliminate snapshot file I/O, lower
lock resources and reduce virtual memory usage.

As the LIST data is stored outside the table, performance may be improved
by attaching to the database with the RESTRICTED ACCESS clause,
which has the side effect of reserving all the LIST storage areas for
EXCLUSIVE access and therefore eliminates snapshot I/O during the
delete of the LIST data.

Examples

Example 1: Deleting data from a table while still maintaining the metadata
definitions

The following example shows how to delete the data from the SALARY_
HISTORY table and still maintain the metadata definitions:

SQL> TRUNCATE TABLE salary_history;
SQL> --
SQL> -- The table still exists, but the rows are deleted.
SQL> --
SQL> SELECT * FROM salary_history;
0 rows selected
SQL> SHOW TABLE (COLUMN) salary_history;
Information for table SALARY_HISTORY

Columns for table SALARY_HISTORY:
Column Name Data Type Domain
----------- --------- ------
EMPLOYEE_ID CHAR(5) ID_DOM
Foreign Key constraint SALARY_HISTORY_FOREIGN1
SALARY_AMOUNT INTEGER(2) SALARY_DOM
SALARY_START DATE VMS DATE_DOM
SALARY_END DATE VMS DATE_DOM

8–418 SQL Statements

UNDECLARE Variable Statement

UNDECLARE Variable Statement

Deletes a variable definition from interactive and dynamic SQL that was
used for invoking stored procedures and for testing procedures in modules or
embedded SQL programs.

Environment

You can use the UNDECLARE statement:

• In interactive SQL

• In dynamic SQL as a statement to be dynamically executed

Format

UNDECLARE <variable-name>
,

Arguments

variable-name
Specifies the name of the local variables.

Example

Example 1: Undeclaring variables in interactive SQL

SQL> ATTACH ’FILENAME personnel’;
SQL>
SQL> DECLARE :X INTEGER;
SQL> DECLARE :Y CHAR(10);
SQL>
SQL> BEGIN
cont> SET :X = 100;
cont> SET :Y = ’Active’;
cont> END;
SQL> PRINT :X, :Y;

X Y
100 Active

SQL> SHOW VARIABLES
X INTEGER
Y CHAR(10)
SQL> UNDECLARE :X, :Y;

SQL Statements 8–419

UPDATE Statement

UPDATE Statement

Modifies a row in a table or view.

Environment

You can use the UPDATE statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

UPDATE <table-name>
<view-name> <correlation-name>

SET <column-name> = value-expr
NULL
DEFAULT

,

WHERE predicate
optimize-clause

CURRENT OF <cursor-name>

returning-clause

8–420 SQL Statements

UPDATE Statement

optimize-clause =

OPTIMIZE FOR FAST FIRST
TOTAL TIME
SEQUENTIAL ACCESS

USING <outline-name>
WITH DEFAULT SELECTIVITY

SAMPLED
AGGRESSIVE

AS <query-name>

returning-clause=

RETURNING value-expr INTO <parameter>
, ,

Arguments

column-name
Specifies the name of a column whose value you want to modify.

correlation-name
Specifies a name you can use to identify the table or view in the predicate
of the UPDATE statement. See Section 2.2.4.1 for more information about
correlation names.

CURRENT OF cursor-name
If the WHERE clause uses CURRENT OF cursor-name, SQL modifies only
the row on which the named cursor is positioned. The cursor named in an
UPDATE statement must meet these conditions:

• The cursor must have been named previously in a DECLARE CURSOR
statement or FOR statement.

• The cursor must be open.

• The cursor must be on a row.

• The FROM clause of the SELECT statement within the DECLARE
CURSOR statement must refer to the table or view that is the target of the
UPDATE statement.

SQL Statements 8–421

UPDATE Statement

DEFAULT
SQL assigns the DEFAULT defined for the column or domain. If no DEFAULT
is defined, then NULL is assumed.

If the DEFAULT clause is used in an UPDATE statement then one of the
following will be applied:

• If a DEFAULT attribute is present for the column then that value will be
applied during UPDATE.

• Else if an AUTOMATIC attribute is present for the column then that
value will be applied during UPDATE. This can only happen if the SET
FLAGS ’AUTO_OVERRIDE’ is used since during normal processing these
columns are read-only.

• Otherwise a NULL will be applied during UPDATE.

INTO parameter
Inserts the value specified to a specified parameter.

The INTO parameter clause is optional in interactive SQL. In this case the
returned values are displayed.

NULL
Specifies a NULL keyword. SQL assigns a null value to columns for which you
specify NULL. Any column assigned a null value must be defined to allow null
values (defined in a CREATE or ALTER TABLE statement without the NOT
NULL clause).

OPTIMIZE AS query-name
Assigns a name to the query.

OPTIMIZE FOR
The OPTIMIZE FOR clause specifies the preferred optimizer strategy for
statements that specify a select expression. The following options are available:

• FAST FIRST

A query optimized for FAST FIRST returns data to the user as quickly as
possible, even at the expense of total throughput.

If a query can be cancelled prematurely, you should specify FAST FIRST
optimization. A good candidate for FAST FIRST optimization is an
interactive application that displays groups of records to the user, where
the user has the option of aborting the query after the first few screens.
For example, singleton SELECT statements default to FAST FIRST
optimization.

If optimization strategy is not explicitly set, FAST FIRST is the default.

8–422 SQL Statements

UPDATE Statement

• TOTAL TIME

If your application runs in batch, accesses all the records in the query,
and performs updates or writes a report, you should specify TOTAL TIME
optimization. Most queries benefit from TOTAL TIME optimization.

• SEQUENTIAL ACCESS

Forces the use of sequential access. This is particularly valuable for tables
that use the strict partitioning functionality.

OPTIMIZE USING outline-name
Explicitly names the query outline to be used with the UPDATE statement
even if the outline ID for the query and for the outline are different.

OPTIMIZE WITH
Selects one of three optimzation controls: DEFAULT (as used by previous
versions of Rdb), AGGRESSIVE (assumes smaller numbers of rows will
be selected), and SAMPLED (which uses literals in the query to perform
preliminary estimation on indices).

predicate
If the WHERE clause includes a predicate, all the rows of the target table for
which the predicate is true are modified.

The columns named in the predicate must be columns of the target table or
view. The target table cannot be named in a column select expression within
the predicate.

See Section 2.7 for more information on predicates.

RETURNING value-expr
Returns the value of the column specified in the value expression. If DBKEY
is specified, SQL returns the database key (dbkey) of the row being updated.
When the DBKEY value is valid, subsequent queries can use the DBKEY value
to access the row directly.

The RETURNING DBKEY clause is not valid in an UPDATE statement used
to assign values to the segments in a column of the LIST OF BYTE VARYING
data type.

Only one row can be updated when you specify the RETURNING clause.

SET
Specifies which columns in the table or view get what values. For each column
you want to modify, you must specify the column name and either a value
expression, the NULL keyword, or the DEFAULT keyword. SQL assigns the
value following the equal sign to the column that precedes the equal sign.

SQL Statements 8–423

UPDATE Statement

table-name
view-name
Specifies the name of the target table or view that you want to modify.

value-expr
Specifies the new value for the modified column. Columns named in the
value expression must be columns of the table or view named after the
UPDATE keyword. The values can be specified through parameters, qualified
parameters, column select expressions, value expressions, or the default values.

See Chapter 2 for more information about parameters, qualified parameters,
column select expressions, value expressions, and default values.

WHERE
Specifies the rows of the target table or view that will be modified according to
the values indicated in the SET clause. If you omit the WHERE clause, SQL
modifies all rows of the target table or view. You can specify either a predicate
or a cursor name in the WHERE clause.

Usage Notes

• When you use the UPDATE statement to modify rows in a view, you change
the rows of the base tables on which the view is based. Because of this,
you cannot use the UPDATE statement on all views. See the CREATE
VIEW Statement for rules about inserting, updating, and deleting values
in views.

• SQL does not require UPDATE statements that specify WHERE
CURRENT OF to refer to cursors declared with the appropriate FOR
UPDATE clause.

If you specify columns in the SET clause that are not in the FOR
UPDATE clause, SQL issues a warning message and proceeds with the
update modifications.

If there is no FOR UPDATE clause with the DECLARE CURSOR
statement, you can update any column. SQL will not issue any
messages.

• The CURRENT OF clause in an embedded UPDATE statement cannot
name a cursor based on a dynamic SELECT statement. To refer to a cursor
based on a dynamic SELECT statement in the CURRENT OF clause, you
must prepare and dynamically execute the UPDATE statement as well.

8–424 SQL Statements

UPDATE Statement

• The CURRENT OF clause in an embedded UPDATE statement cannot
name a read-only cursor. See the DECLARE CURSOR Statement for
Usage Notes about read-only cursors.

• When specifying a column name in the UPDATE statement, if the column
name is the same as a parameter, you must use a correlation name or table
name with the column name.

• You cannot specify both the OPTIMIZE clause and the WHERE CURRENT
OF clause.

• You cannot specify an outline name in a compound-use-statement. See the
Compound Statement for more information about compound statements.

• If an outline exists, Oracle Rdb will use the outline specified in the
OPTIMIZE USING clause unless one or more of the directives in the
outline cannot be followed. SQL issues an error message if the existing
outline cannot be used.

If you specify the name of an outline that does not exist, Oracle Rdb
compiles the query, ignores the outline name, and searches for an existing
outline with the same outline ID as the query. If an outline with the same
outline ID is found, Oracle Rdb attempts to execute the query using the
directives in that outline. If an outline with the same outline ID is not
found, the optimizer selects a strategy for the query for execution.

See the Oracle Rdb7 Guide to Database Performance and Tuning for more
information regarding query outlines.

Examples

Example 1: Using the UPDATE statement in interactive SQL

The following interactive SQL example changes the address of the employee
with EMPLOYEE_ID 00164 and confirms the change:

SQL> UPDATE EMPLOYEES
cont> SET ADDRESS_DATA_1 = ’16 Ridge St.’
cont> WHERE EMPLOYEE_ID = ’00164’;
1 row updated
SQL> SELECT EMPLOYEE_ID, FIRST_NAME, LAST_NAME, ADDRESS_DATA_1
cont> FROM EMPLOYEES
cont> WHERE EMPLOYEE_ID = ’00164’;
EMPLOYEE_ID FIRST_NAME LAST_NAME ADDRESS_DATA_1
00164 Alvin Toliver 16 Ridge St.
1 row selected

SQL Statements 8–425

UPDATE Statement

Example 2: Using the UPDATE statement in a program

The following example illustrates using a host language variable in an
embedded SQL statement to update an employee’s status code:

DISPLAY "Enter employee’s ID number: " WITH NO ADVANCING.
ACCEPT ID.
DISPLAY "Enter new status code: " WITH NO ADVANCING.
ACCEPT STATUS-CODE.

EXEC SQL
DECLARE TRANSACTION READ WRITE

END-EXEC

EXEC SQL
UPDATE EMPLOYEES

SET STATUS_CODE = :STATUS-CODE
WHERE EMPLOYEE_ID = :ID

END-EXEC

EXEC SQL COMMIT END-EXEC

8–426 SQL Statements

WHENEVER Statement

WHENEVER Statement

Specifies the execution path a host language program will take when any
embedded SQL statement results in one of these following exception conditions:

• Row not found

• An error condition

• A warning condition

For these conditions, the WHENEVER statement specifies that the program
continue execution or branch to another part of the program.

Environment

You can issue the WHENEVER statement only in host language programs.

Format

WHENEVER NOT FOUND
SQLERROR
SQLWARNING

CONTINUE
GOTO <host-label-name>
GO TO :

<host-label-number>

Arguments

CONTINUE
Specifies that the program continue execution with the next sequential
statement following the statement that generated an error.

GOTO host-label-name
GOTO host-label-number
Specifies that the program branch to the statement identified by the host
label. The form of the host label depends on the host language. You can use a
colon (:) before a host label represented by a name, but not before a host label
represented by a number.

SQL Statements 8–427

WHENEVER Statement

NOT FOUND
Indicates the exception condition returned when SQL processes all the rows of
a result table:

• When a cursor referred to in a FETCH, UPDATE, or DELETE statement is
positioned after the last row

• When a query specifies an empty result table

This is the same condition identified by a value of 100 in the SQLCODE
variable, the value of ’02000’ in the SQLSTATE variable, and by the RDB$_
STREAM_EOF error.

SQLERROR
Indicates any error condition. For the SQLERROR argument of the
WHENEVER statement, SQL defines an error condition as any condition
that returns a negative value to SQLCODE. See Appendix C for a list of the
conditions that result in negative values for the SQLCODE field.

SQLWARNING
Indicates any warning condition. Appendix C lists the conditions that result in
warnings for the SQLSTATE Status Parameter.

Usage Notes

• Use of WHENEVER statements is optional. Omitting a WHENEVER
statement for a class of exception conditions is equivalent to specifying the
CONTINUE argument for that class of conditions.

• WHENEVER statements are not executable. SQL evaluates WHENEVER
statements when the program precompiles. This means that the scope
of a given WHENEVER statement cannot be controlled by conditional
statements in the host program. A given WHENEVER statement affects
all executable SQL statements until the precompiler encounters the next
WHENEVER statement for the same exception condition in its sequential
processing of the source program.

• Once you specify a WHENEVER . . . GOTO statement for a class
of exception conditions, you can disable it with a WHENEVER . . .
CONTINUE statement for that class of conditions.

• The ANSI/ISO 1989 standard requires a colon (:) before the host label
name in the GOTO clause. The current ANSI/ISO SQL standard does not
allow this colon.

8–428 SQL Statements

WHENEVER Statement

Example

Example 1: Using WHENEVER statements in a PL/I program

/* When an SQL statement results in
an RDB$_STREAM_EOF error, the
program branches to LABEL_NOT_FOUND: */
EXEC SQL WHENEVER NOT FOUND GOTO LABEL_NOT_FOUND;

/* When an SQL statement results in a
warning severity error condition, the
program branches to LABEL_ERROR: */
EXEC SQL WHENEVER SQLWARNING GOTO LABEL_ERROR;

/* When an SQL statement results in
an error severity exception condition, the
program branches to LABEL_ERROR: */
EXEC SQL WHENEVER SQLERROR GOTO LABEL_ERROR;

SQL Statements 8–429

WHILE Control Statement

WHILE Control Statement

Allows the repetitive execution of one or more SQL statements in a compound
statement based on the truth value of a predicate.

Environment

You can use the WHILE control statement in a compound statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format
while-statement=

WHILE predicate
<beginning-label>:

DO compound-use-statement END WHILE

LOOP compound-use-statement END LOOP

<ending-label>

Arguments

beginning-label:
Assigns a name to a control loop. A beginning label used with the LEAVE
statement lets you perform a controlled exit from the WHILE loop. If you
include an ending label, it must be identical to its corresponding beginning
label. A beginning label must be unique within the procedure containing the
label.

compound-use-statement
Identifies the SQL statements allowed in a compound statement block. See the
Compound Statement for the list of valid statements.

8–430 SQL Statements

WHILE Control Statement

DO
Marks the start of a control loop.

END LOOP ending-label
Marks the end of a LOOP control loop. If you choose to include the optional
ending label, it must match exactly its corresponding beginning label. An
ending label must be unique within the procedure in which the label is
contained.

The optional ending-label argument makes multistatement procedures easier
to read, especially in very complex multistatement procedure blocks.

END WHILE ending-label
Marks the end of a DO control loop. If you choose to include the optional
ending label, it must match exactly its corresponding beginning label. An
ending label must be unique within the procedure in which the label is
contained.

The optional ending-label argument makes multistatement procedures easier
to read, especially in very complex multistatement procedure blocks.

LOOP
Marks the start of a control loop.

WHILE predicate
Specifies a search condition that controls how many times SQL can execute a
compound statement.

SQL evaluates the WHILE search condition. If it evaluates to TRUE, SQL
executes the associated sequence of SQL statements. If SQL does not
encounter an error exception, control returns to the WHILE clause at the
top of the loop for subsequent evaluation. Each time the search condition
evaluates to TRUE, the WHILE-DO statement executes the SQL statements
embedded within its DO . . . END WHILE block. If the search condition
evaluates to FALSE or UNKNOWN, SQL bypasses the DO . . . END WHILE
block and passes control to the next statement.

Usage Notes

Although the DO . . . END WHILE and LOOP . . . END LOOP are
semantically equivalent, the DO . . . END WHILE syntax conforms to the
ANSI/ISO SQL/PSM standard.

SQL Statements 8–431

WHILE Control Statement

Examples

Example 1: Using the While Statement to Count Substrings

SQL> DECLARE :SUB_STR CHAR;
SQL> DECLARE :SRC_STR CHAR(50);
SQL> BEGIN
cont> SET :SUB_STR=’l’;
cont> SET :SRC_STR=’The rain in Spain falls mainly on the plain’;
cont> END;
SQL> SET FLAGS ’TRACE’;
SQL> BEGIN
cont>-- This procedure counts the occurrence of substrings
cont> DECLARE :STR_COUNT INTEGER=0;
cont> DECLARE :CUR_POS INTEGER = POSITION (:SUB_STR IN :SRC_STR);
cont> WHILE :CUR_POS >0 DO
cont> SET :STR_COUNT=:STR_COUNT + 1;
cont> SET :CUR_POS = POSITION (:SUB_STR IN :SRC_STR FROM :CUR_POS + 1);
cont> END WHILE;
cont> TRACE ’FOUND ’, :STR_COUNT, ’ OCCURRENCES OF "’, :SUB_STR, ’"’;
cont> END;
~Xt: Found 4 occurrences of "l"

8–432 SQL Statements

Index

$ (dollar sign)
See Operating system invocation statement ($)

A
Access control lists (ACLs), 8–125

changing, 8–125
database, 8–125
deleting entries from, 8–125
general identifier, 8–130
system-defined identifier, 8–132
table, 8–125
user identifier, 8–125, 8–132

Access privilege sets, 8–135
access control list (ACL) style, 8–125
changing, 8–135
database, 8–135
deleting entries from, 8–135
displaying information about, 8–374
external routine, 8–135
module, 8–135
table, 8–135
user identifier, 8–135, 8–139

ACL clause
of IMPORT statement, 8–15

ACLs
See also ACL clause
See also Privilege, Protection

ACL-style protection clause
differences from ANSI/ISO-style, 8–19

Ada language
INCLUDE FROM DICTIONARY not

supported, 8–34

ADJUSTABLE LOCK GRANULARITY clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

AFTER clause
of REVOKE statement, 8–128

After-image journal
displaying information about, 8–372

AGGRESSIVE SELECTIVITY transaction option
SET OPTIMIZATION LEVEL statement,

8–305
Alias

displaying information about, 8–367
for default database, 8–132
in IMPORT statement, 8–21
in REVOKE statement, 8–131, 8–139
in SET TRANSACTION statement, 8–332
in SHOW statement, 8–367
RDB$DBHANDLE, 8–132
SHOW ALIAS statement, 8–367
specifying, 8–189

ALIAS clause
of IMPORT statement, 8–21

ALL keyword
privileges, 8–135

ALLOCATION clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

ALTER DICTIONARY clause
of INTEGRATE DOMAIN statement, 8–70
of INTEGRATE statement, 8–63

Index–1

ALTER DICTIONARY clause of INTEGRATE
statement, 8–58

ALTER FILES clause of INTEGRATE statement,
8–57, 8–59

ANSI/ISO SQL standard
flagging extensions, 8–172
flagging violations of, 8–172, 8–201, 8–371
SET ANSI DATE statement, 8–201
SET ANSI IDENTIFIERS statement, 8–201
SET ANSI QUOTING statement, 8–201

ANSI/ISO-style privileges, 8–135
ANSI/ISO-style protection clause

differences from ACLS-style, 8–19
ANSI IDENTIFIERS MODE clause

of SHOW statement, 8–368
ANSI QUOTING MODE clause

of SHOW statement, 8–368
Assistance (online help) in SQL, 8–2
ASYNC BATCH WRITES clause

of IMPORT statement
See CREATE DATABASE statement in

Volume 2
ASYNCH BATCH WRITE clause

IMPORT statement, 8–24
ASYNCH PREFETCH clause

IMPORT statement, 8–24
ASYNC PREFETCH clause

of IMPORT statement
See CREATE DATABASE statement in

Volume 2
Authentication

user, 8–19

B
BATCH UPDATE clause

of IMPORT statement, 8–15
Batch-update transaction, 8–15, 8–328, 8–329
Boldface

disabling in log files, 8–175
BUFFER SIZE clause

of IMPORT statement
See CREATE DATABASE statement in

Volume 2

C
Cache

displaying information about, 8–368
SHOW CACHE statement, 8–368

CACHE USING clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

CARDINALITY COLLECTION clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

CARRY OVER LOCKS clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

Catalog
displaying information about, 8–369
expression, 8–207
selecting, 8–206
SHOW CATALOG statement, 8–369

CDD LINKS clause
of IMPORT statement, 8–15

Changing
See also Modifying

Character length
CHARACTERS option, 8–212
in dynamic SQL, 8–211, 8–231
in interactive SQL, 8–211, 8–231
OCTETS option, 8–211

CHARACTER LENGTH clause
CHARACTERS option, 8–212
OCTETS option, 8–211

character set
in SQL module language, 8–253

Character set
displaying, 8–369
module

default character set, 8–223
identifier character set, 8–292
literal character set, 8–297
names character set, 8–299
national character set, 8–302

Index–2

Character set (cont’d)
session

default character set, 8–223
identifier character set, 8–292
literal character set, 8–297
names character set, 8–299
national character set, 8–302

CHARACTER SETS clause
of SHOW statement, 8–369

CHARACTERS option
of SET CHARACTER LENGTH statement,

8–212
CHAR data type

interpreted as fixed character string, 8–32
null-terminated byte strings in C, 8–33

CHECKSUM CALCULATION clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

C language
character data interpretation options, 8–32

CLEAN BUFFER COUNT clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

Closing a log file, 8–174
Collating sequence

altering, 8–7
displaying information about, 8–369

COLLATING SEQUENCE clause
of IMPORT statement, 8–7
of SHOW statement, 8–369

Column privileges
displaying information about, 8–374

COMMIT EVERY clause
of IMPORT statement, 8–16

Compound statements
IF control statement, 8–4
LEAVE control statement, 8–75
LOOP control statement, 8–82
OPTIMIZE WITH clause, 8–44, 8–423
REPEAT control statement, 8–119
SET assignment control statement, 8–221
SIGNAL control statement, 8–398
TRACE control statement, 8–410

Compound statements (cont’d)
using with LEAVE, 8–76
WHILE control statement, 8–430

Concurrency
See Isolation level

Concurrent index creation, 8–333
Connection

displaying information about, 8–369
name, 8–217
selecting, 8–217

CONNECTIONS clause of SHOW statement,
8–369

Consistency
See Isolation level

Constraint
default mode, 8–225
displaying evaluation setting, 8–369
evaluating, 8–198

CONSTRAINT MODE clause
of SHOW statement, 8–369

Continuation character
SET statement, 8–169

CONTINUE argument of WHENEVER
statement, 8–427

CONTINUE CHARACTER clause
of SHOW statement, 8–369

Control statement
SET, 8–221

Control statements
IF, 8–4
ITERATE, 8–73
LEAVE, 8–75
LOOP, 8–82
REPEAT, 8–119
SET, 8–221
TRACE, 8–410
WHILE, 8–430

CREATE CACHE clause
of IMPORT statement, 8–16

CREATE INDEX statement
of IMPORT statement, 8–16

CREATE PATHNAME clause of INTEGRATE
statement, 8–57, 8–68

Index–3

CREATE STORAGE AREA clause
of IMPORT statement, 8–16

CREATE STORAGE MAP statement
of IMPORT statement, 8–17

Creating
indexes concurrently, 8–333

Creating a repository definition
using SQL, 8–68

Currency sign
SHOW CURRENCY SIGN statement, 8–370

CURRENCY SIGN clause
of SET statement, 8–169

CURRENT_TIMESTAMP data type
specifying default format, 8–228

Cursor
displaying information about, 8–370
inserting row into, 8–47
opening, 8–85
SHOW CURSOR statement, 8–370

D
Database

denying access, 8–125, 8–135
displaying information about, 8–370
integrating in repository, 8–56
moving, 8–7
restricted access to, 8–24
specifying

in REVOKE statement, 8–131, 8–139
Database access

restricted, 8–24
Database key

finding for specified record, 8–44
in UPDATE statement, 8–423

Database privileges, 8–125, 8–135
displaying information about, 8–374

DATABASES clause
of SHOW statement, 8–370

DATA clause
of IMPORT statement, 8–17

DATA DEFINITION lock type, 8–333
Data dictionary

See Repository

Data manipulation statements
INSERT from FILENAME statement, 8–54
INSERT statement, 8–39
SELECT statement, 8–151, 8–164
UPDATE statement, 8–420

Data type
CURRENT_TIMESTAMP, 8–228
DATE, 8–228

DATE clause
of SET ANSI statement, 8–201

DATE data type
specifying default format, 8–228

Date format
default setting, 8–228
SET DATE FORMAT statement, 8–169,

8–170
SET DEFAULT DATE FORMAT statement,

8–228
SHOW DATE FORMAT statement, 8–370

DATE FORMAT clause
of SET statement, 8–170

Dbkey
See Database key

DBKEY SCOPE clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

DCL
See Operating system invocation statement ($)

DCL invoke statement ($)
See Operating system invocation statement ($)

Deadlock
avoiding, 8–335

Debug flags
displaying information about, 8–371

Debugging
multistatement procedures, 8–410

DECdtm services, 8–342
Default character set

in SQL module language, 8–223
of session, 8–223

DEFAULT CONSTRAINT MODE clause
of SET statement, 8–225

Index–4

Default date format
setting, 8–228

DEFAULT option
SET OPTIMIZATION LEVEL statement,

8–305
DEFAULT STORAGE AREA clause

of IMPORT statement
See CREATE DATABASE statement in

Volume 2
Deleting

access privilege set entries, 8–135
ACL entries, 8–125
database access, 8–125, 8–135
external routine access, 8–135
module access, 8–135
privileges, 8–125, 8–135
table access, 8–125, 8–135

Deprecated feature
See also Obsolete SQL syntax
SET ANSI statement, 8–200

DEPTH clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

DESCRIBE statement
MARKERS clause, 8–99

DETECTED ASYNC PREFETCH clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

Dialect setting
MIA, 8–236
ORACLE LEVEL1, 8–233
ORACLE LEVEL2, 8–235
SET DIALECT statement, 8–231
SQL89, 8–236
SQL92, 8–237
SQL99, 8–238
SQLV40, 8–238

DICTIONARY clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

of SET statement, 8–170

DIGITAL Command Language
See DCL

Digit separator
SHOW DIGIT SEPARATOR statement, 8–370

DIGIT SEPARATOR clause
of SET statement, 8–171

DISPLAY clause
of SHOW statement, 8–371

Displaying ANSI/ISO-style privileges
users granting, 8–380
users receiving, 8–380

Displaying database information
aliases, 8–367
cache, 8–368
catalogs, 8–369
character sets, 8–369
collating sequences, 8–369
columns, 8–379, 8–380
comments, 8–379, 8–380
connections, 8–369
constraint evaluation settings, 8–369
constraints, 8–379
cursors, 8–370
databases, 8–370
date format, 8–368
debug flags, 8–371
domains, 8–371
execution mode, 8–371
external functions, 8–371
hold cursors, 8–372
indexes, 8–372, 8–379
journals, 8–372
modules, 8–373
privileges, 8–374
procedures, 8–375
protection, 8–374
query limit, 8–376
query outlines, 8–374
repository, 8–370
row cache, 8–368
schemas, 8–376
SHOW statement, 8–357
software version, 8–380
source definitions, 8–380
storage area attributes, 8–377

Index–5

Displaying database information (cont’d)
storage areas, 8–377
storage area usage, 8–377
storage maps, 8–378, 8–379
stored functions, 8–371
tables, 8–379
transactions, 8–379
triggers, 8–379
variables, 8–380
views, 8–380

Displaying messages
See also EXECUTE statement
in command files, 8–103

Distributed transaction manager, 8–342
Dollar sign ($) statement

See Operating system invocation statement ($)
Domain

displaying information about, 8–371
DOMAINS clause

of SHOW statement, 8–371
DROP CACHE clause

of IMPORT statement, 8–17
DROP INDEX statement

of IMPORT statement, 8–17
DROP STORAGE AREA clause

of IMPORT statement, 8–17
DROP STORAGE MAP statement

of IMPORT statement, 8–18
Dynamic SQL

associated embedded statements, 8–97, 8–98
INCLUDE statement, 8–31
parameter markers, 8–85, 8–94
PL/I, 8–99
PREPARE statement, 8–92
RELEASE statement, 8–106
select lists, 8–92
SQLDA, 8–31
SQLDA2, 8–31
statement names, 8–92, 8–106
statements not allowed, 8–96
statement string length, 8–93
valid statements, 8–97, 8–98

E
EDIT statement

changing settings, 8–171
EDIT STRING clause

overriding SET DATE FORMAT, 8–178
Ending

transactions
ROLLBACK statement, 8–146 to 8–148

Error handling
branching after errors, 8–427
continuing after errors, 8–427
end of stream, 8–428
error conditions, 8–428
warning conditions, 8–428
with message vector, 8–33
with SQLCA, 8–33
with WHENEVER statement, 8–427

EVALUATING clause in SET TRANSACTION
statement, 8–330

EXECUTE clause
of SET statement, 8–171

EXECUTE statement
in a PL/I program, 8–99
SQLDA, 8–99

EXTENT clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

External function privileges
displaying information about, 8–374

External functions
displaying information about, 8–371

External procedure
privileges

displaying information about, 8–374
External routine

denying access, 8–135
privileges, 8–135
revoking privilege, 8–131, 8–139
specifying

in REVOKE statement, 8–131, 8–139

Index–6

F
FAST FIRST transaction option

SET OPTIMIZATION LEVEL statement,
8–305

FEEDBACK clause
of SET statement, 8–172

FILENAME clause
of IMPORT statement, 8–18

File specification
in INCLUDE statement, 8–32
of IMPORT statement, 8–18

Fixed character strings in SQL precompiler,
8–32

FLAGGER clause of SET statement, 8–172
Flagging ANSI/ISO standard extensions, 8–172
FLAGS clause of SHOW statement, 8–371
FOR control statement

using with LEAVE, 8–76
FOR UPDATE clause

of SELECT statement, 8–155
FROM clause

of IMPORT statement, 8–18
of PREPARE statement, 8–93
of SHOW USERS statement, 8–371

FUNCTIONS clause of SHOW statement, 8–371

G
General identifiers, 8–130
Getting out of interactive SQL

QUIT statement, 8–105
GLOBAL BUFFERS clause

of IMPORT statement
See CREATE DATABASE statement in

Volume 2
GOTO argument of WHENEVER statement,

8–427

H
Handling errors

branching after errors, 8–427
continuing after errors, 8–427
end of stream, 8–428
error conditions, 8–428
warning conditions, 8–428
with message vector, 8–33
with SQLCA, 8–33
with WHENEVER statement, 8–427

Hashed index
loading data with, 8–44

HELP statement, 8–2
Holdable cursor

setting session default, 8–289
Hold cursor definitions

displaying information about, 8–372
HOLD CURSORS MODE clause of SHOW

statement, 8–372

I
Identifier character set

in SQL module language, 8–292
of session, 8–292

IDENTIFIERS clause
of SET ANSI statement, 8–201

Identifiers in access privilege sets, 8–135
user identifier, 8–139

Identifiers in ACLs, 8–125
general, 8–130
multiple, 8–130
system, 8–132
user identifier, 8–132

IF control statement
ELSE clause, 8–5
ELSEIF . . . THEN clause, 8–5
END IF clause, 8–4
IF . . . THEN clause, 8–5
of compound statement, 8–4

IMPORT statement, 8–7
ACL clause, 8–15
ADJUSTABLE LOCK GRANULARITY clause

Index–7

IMPORT statement
ADJUSTABLE LOCK GRANULARITY clause

(cont’d)
See CREATE DATABASE statement in

Volume 2
ALIAS clause, 8–21
aliases, 8–21
ALLOCATION clause

See CREATE DATABASE statement in
Volume 2

ASYNC BATCH WRITES clause
See CREATE DATABASE statement in

Volume 2
ASYNC PREFETCH clause

See CREATE DATABASE statement in
Volume 2

BATCH UPDATE clause, 8–15
BUFFER SIZE clause

See CREATE DATABASE statement in
Volume 2

CACHE USING clause
See CREATE DATABASE statement in

Volume 2
CARDINALITY COLLECTION clause

See CREATE DATABASE statement in
Volume 2

CARRY OVER LOCKS clause
See CREATE DATABASE statement in

Volume 2
CDD LINKS clause, 8–15
CHECKSUM CALCULATION clause

See CREATE DATABASE statement in
Volume 2

CLEAN BUFFER COUNT clause
See CREATE DATABASE statement in

Volume 2
COLLATING SEQUENCE clause, 8–7
COMMIT EVERY clause, 8–16
CREATE CACHE clause, 8–16
CREATE INDEX statement, 8–16
CREATE STORAGE AREA clause, 8–16
CREATE STORAGE MAP statement, 8–17
DATA clause, 8–17
DBKEY SCOPE clause

IMPORT statement
DBKEY SCOPE clause (cont’d)

See CREATE DATABASE statement in
Volume 2

DEFAULT STORAGE AREA clause
See CREATE DATABASE statement in

Volume 2
DEPTH clause

See CREATE DATABASE statement in
Volume 2

DETECTED ASYNC PREFETCH clause
See CREATE DATABASE statement in

Volume 2
DICTIONARY clause

See CREATE DATABASE statement in
Volume 2

DROP CACHE clause, 8–17
DROP INDEX statement, 8–17
DROP STORAGE AREA clause, 8–17
DROP STORAGE MAP statement, 8–18
EXTENT clause

See CREATE DATABASE statement in
Volume 2

FILENAME clause, 8–18
file specifications, 8–18
FROM clause, 8–18
GLOBAL BUFFERS clause

See CREATE DATABASE statement in
Volume 2

INCREMENTAL BACKUP SCAN
OPTIMIZATION clause
See CREATE DATABASE statement in

Volume 2
INTERVAL clause

See CREATE DATABASE statement in
Volume 2

LIST STORAGE AREA clause
See CREATE DATABASE statement in

Volume 2
LOCKING clause

See CREATE DATABASE statement in
Volume 2

LOCK PARTITIONING clause
See CREATE DATABASE statement in

Volume 2

Index–8

IMPORT statement (cont’d)
LOCK TIMEOUT INTERVAL clause

See CREATE DATABASE statement in
Volume 2

MAXIMUM BUFFER COUNT clause
See CREATE DATABASE statement in

Volume 2
METADATA CHANGES clause

See CREATE DATABASE statement in
Volume 2

MULTISCHEMA clause
See CREATE DATABASE statement in

Volume 2
MULTITHREAD AREA ADDITIONS clause

See CREATE DATABASE statement in
Volume 2

NO ROW CACHE clause
See CREATE DATABASE statement in

Volume 2
NUMBER OF BUFFERS clause

See CREATE DATABASE statement in
Volume 2

NUMBER OF CLUSTER NODES clause
See CREATE DATABASE statement in

Volume 2
NUMBER OF RECOVERY BUFFERS clause

See CREATE DATABASE statement in
Volume 2

NUMBER OF USERS clause
See CREATE DATABASE statement in

Volume 2
OPEN clause

See CREATE DATABASE statement in
Volume 2

PAGE FORMAT clause
See CREATE DATABASE statement in

Volume 2
PAGE SIZE clause

See CREATE DATABASE statement in
Volume 2

PAGE TRANSFER clause
See CREATE DATABASE statement in

Volume 2
PROTECTION clause, 8–19
RECOVERY JOURNAL clause

IMPORT statement
RECOVERY JOURNAL clause (cont’d)

See CREATE DATABASE statement in
Volume 2

RESERVE n CACHE SLOTS clause
See CREATE DATABASE statement in

Volume 2
RESERVE n JOURNALS clause

See CREATE DATABASE statement in
Volume 2

RESERVE n STORAGE AREAS clause
See CREATE DATABASE statement in

Volume 2
RESTRICTED ACCESS clause, 8–24
ROW CACHE clause

See CREATE DATABASE statement in
Volume 2

ROWID SCOPE clause
See CREATE DATABASE statement in

Volume 2
SEGMENTED STRING clause

See CREATE DATABASE statement in
Volume 2

SHARED MEMORY clause
See CREATE DATABASE statement in

Volume 2
SNAPSHOT ALLOCATION clause

See CREATE DATABASE statement in
Volume 2

SNAPSHOT CHECKSUM CALCULATION
clause
See CREATE DATABASE statement in

Volume 2
SNAPSHOT DISABLED clause

See CREATE DATABASE statement in
Volume 2

SNAPSHOT ENABLED clause
See CREATE DATABASE statement in

Volume 2
SNAPSHOT EXTENT clause

See CREATE DATABASE statement in
Volume 2

SNAPSHOT FILENAME clause
See CREATE DATABASE statement in

Volume 2

Index–9

IMPORT statement (cont’d)
STATISTICS COLLECTION clause

See CREATE DATABASE statement in
Volume 2

storage area parameters, 8–19
SYSTEM INDEX COMPRESSION clause

See CREATE DATABASE statement in
Volume 2

THRESHOLD clause
See CREATE DATABASE statement in

Volume 2
THRESHOLDS clause

See CREATE DATABASE statement in
Volume 2

TRACE clause, 8–20
USER clause, 8–20
USING clause

of USER clause, 8–21
WAIT clause

See CREATE DATABASE statement in
Volume 2

WORKLOAD COLLECTION clause
See CREATE DATABASE statement in

Volume 2
WRITE ONCE clause

See CREATE DATABASE statement in
Volume 2

INCLUDE statement, 8–31
file specifications, 8–32
FROM DICTIONARY not supported in Ada,

8–34
message vector, 8–33
record definitions, 8–32
repository path names, 8–32
restriction, 8–32
SQLCA, 8–33, 8–34

EXTERNAL keyword, 8–32
SQLDA, 8–34
SQLDA2, 8–34
to declare host structures, 8–32, 8–33, 8–34

INCREMENTAL BACKUP SCAN
OPTIMIZATION clause

of IMPORT statement
See CREATE DATABASE statement in

Volume 2

Index
creating concurrently, 8–333

Index definitions
displaying information about, 8–372

INDEXES clause of SHOW statement, 8–372
Insert-only table cursor, 8–47
INSERT statement, 8–39

in a PL/I program, 8–99
in dynamic SQL, 8–99
parameter markers, 8–99
PLACEMENT ONLY RETURNING DBKEY

clause, 8–44
PLACEMENT ONLY RETURNING ROWID

clause, 8–44
positioned, 8–39

INTEGRATE statement, 8–56
ALTER DICTIONARY clause, 8–58
ALTER FILES clause, 8–57, 8–60
CREATE PATHNAME clause, 8–57
repository path names, 8–57
restriction, 8–59
updating repository, 8–63, 8–70

Intermediate result table, 8–151
Internationalization features

See also IMPORT statement, COLLATING
SEQUENCE clause

See also SET statement, CURRENCY SIGN
clause

See also SET statement, DATE FORMAT
clause

See also SET statement, DIGIT SEPARATOR
clause

See also SET statement, LANGUAGE clause
See also SET statement, RADIX POINT clause
See also SHOW statement, SHOW

CURRENCY SIGN
See also SHOW statement, SHOW DATE

FORMAT
See also SHOW statement, SHOW DIGIT

SEPARATOR
See also SHOW statement, SHOW

LANGUAGE
See also SHOW statement, SHOW RADIX

POINT
logical names used for, 8–178

Index–10

INTERVAL clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

INTO clause
of PREPARE statement, 8–94
of UPDATE statement, 8–422
SINGLETON SELECT statement, 8–166

Isolation level
phenomena, 8–331, 8–406
READ COMMITTED, 8–331, 8–406

FOR UPDATE ONLY cursor, 8–341
increase of lock operations, 8–340

REPEATABLE READ, 8–331, 8–406
reducing index contention, 8–340

SERIALIZABLE
default, 8–331, 8–406
read-only transactions, 8–340

ITERATE control statement
of compound statement, 8–73

J
JOURNALS clause

of SHOW statement, 8–372

K
Keyword

controlling interpretation of
in dynamic SQL, 8–231, 8–294
in interactive SQL, 8–231, 8–294

rules setting, 8–294

L
Language

displaying date format
SHOW LANGUAGE statement, 8–373

LANGUAGE clause
of SET statement, 8–173

LEAVE control statement
control loop and, 8–83
of compound statement, 8–75
statement label, 8–75

Leaving interactive SQL
QUIT statement, 8–105

Length
character

in dynamic SQL, 8–211, 8–231
in interactive SQL, 8–211, 8–231

CHARACTERS option, 8–212
OCTETS option, 8–211

Limits and parameters
maximum length for statement strings, 8–93

LINE LENGTH clause
of SET statement, 8–174

LINESIZE clause
of SET statement, 8–174

List
inserting values into, 8–39, 8–52

LIST STORAGE AREA clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

Literal character set
of session, 8–297
of SQL module language, 8–297

Loading data
with hashed indexes, 8–44

LOCKING clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

LOCK PARTITIONING clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

LOCK TABLE statement, 8–78
DATA DEFINITION lock type, 8–78
READ lock type, 8–78
WRITE lock type, 8–78

LOCK TIMEOUT INTERVAL clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

Lock timeouts, 8–334

Index–11

Log file
closing, 8–174
disabling boldface, 8–175
opening, 8–174

Logical name
for internationalization, 8–178
using with operating system invocation

statement, 8–90
LOOP control statement

beginning label, 8–83
ending label, 8–83
LOOP clause, 8–83
of compound statement, 8–82
using with LEAVE, 8–76
WHILE clause, 8–82

M
MARKERS clause of DESCRIBE statement,

8–99
MAXIMUM BUFFER COUNT clause

of IMPORT statement
See CREATE DATABASE statement in

Volume 2
Messages

flagging obsolete syntax, 8–177, 8–381
Message vector

in INCLUDE statement, 8–33
METADATA CHANGES clause

of IMPORT statement
See CREATE DATABASE statement in

Volume 2
MIA

dialect setting, 8–236
MIA standard syntax

flagging violations of, 8–371
Modifying

access privilege set entries, 8–135
ACL entries, 8–125
data with UPDATE statement, 8–420
interactive SQL with SET statement, 8–167

Modifying a repository field
using SQL, 8–71

Module
default character set, 8–223
denying access, 8–135
identifier character set, 8–292
literal character set, 8–297
names character set, 8–299
national character set, 8–302
privileges, 8–135
restriction on multimodule files, 8–35
specifying

in REVOKE statement, 8–131, 8–139
MODULES clause

of SHOW statement, 8–373
Multiple identifiers, 8–130
MULTISCHEMA clause

of IMPORT statement
See CREATE DATABASE statement in

Volume 2
Multistatement procedure

See also Compound statement
debugging, 8–410

MULTITHREAD AREA ADDITIONS clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

N
Name

character set for
session, 8–299
SQL module language, 8–299

dynamic SQL statements, 8–92, 8–106
statement (dynamic), 8–92, 8–106

Naming a query, 8–43, 8–156, 8–422
National character set

in SQL module language, 8–302
of session, 8–302

Nonrepeatable read phenomenon
in transactions, 8–331, 8–406

Nonstandard syntax flagging, 8–172
NO ROW CACHE clause

of IMPORT statement
See CREATE DATABASE statement in

Volume 2

Index–12

NOT FOUND argument of WHENEVER
statement, 8–428

NOWAIT mode in SET TRANSACTION
statement, 8–335

Null-terminated CHAR fields
C language, 8–33

NUMBER OF BUFFERS clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

NUMBER OF CLUSTER NODES clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

NUMBER OF RECOVERY BUFFERS clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

NUMBER OF USERS clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

O
Obsolete SQL syntax

diagnostic messages, 8–177, 8–381
OCTETS option

of SET CHARACTER LENGTH statement,
8–211

OPEN clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

Opening a cursor, 8–85
Opening a log file, 8–174
OPEN statement, 8–85

USING clause, 8–85
Operating system

invoke statement ($)
and logical names, 8–90

Operating system invocation statement, 8–90
Optimization level

setting, 8–304

OPTIMIZE clause
AS keyword, 8–43, 8–156, 8–422
USING keyword, 8–43, 8–157, 8–423

Optimizing
queries, 8–43, 8–156, 8–422
using an outline, 8–43, 8–157, 8–423
using an query name, 8–43, 8–156, 8–422

ORACLE LEVEL1
dialect setting, 8–233

ORACLE LEVEL2
dialect setting, 8–235

OSF invoke statement ($)
See Operating system invocation statement ($)

Outline name
using, 8–43, 8–157, 8–423

OUTLINES clause
of SHOW statement, 8–374

P
PAGE FORMAT clause

of IMPORT statement
See CREATE DATABASE statement in

Volume 2
PAGE LENGTH clause

of SET statement, 8–175
PAGE SIZE clause

of IMPORT statement
See CREATE DATABASE statement in

Volume 2
PAGESIZE clause

of SET statement, 8–175
PAGE TRANSFER clause

of IMPORT statement
See CREATE DATABASE statement in

Volume 2
Parameter

compared with parameter markers, 8–94
specifying dynamic statements, 8–93

Parameter markers, 8–85
compared with host language variables, 8–94
information in SQLDA, 8–95
in statement string, 8–94

Index–13

Performance
optimizing queries, 8–43, 8–156, 8–422

Phantom phenomenon
in transactions, 8–331, 8–406
nonrepeatable read, 8–331, 8–406
permitted at different isolation levels, 8–331,

8–406
PL/I language

dynamic SQL, 8–99
SQLDA, 8–31

PLACEMENT ONLY RETURNING DBKEY
clause

of INSERT statement, 8–44
PLACEMENT ONLY RETURNING ROWID

clause
of INSERT statement, 8–44

POSITION clause
of REVOKE statement, 8–128

Positioned insert
using RETURNING DBKEY clause, 8–47

Prepared statement names, 8–92
PREPARE statement, 8–92

FROM clause, 8–93
in a PL/I program, 8–99
parameter markers, 8–94
SELECT LIST INTO clause, 8–94
SQLCA, 8–96
SQLDA, 8–94
statement-name, 8–94
statement string, 8–93

PRINT statement, 8–103
Privilege

ALL, 8–135
database, 8–125, 8–135
deleting, 8–125, 8–135
displaying information about, 8–374
module, 8–135
PROTECTION clause

of IMPORT statement, 8–19
REVOKE statement, 8–125, 8–135
SHOW, 8–374
table, 8–125, 8–135

PROCEDURES clause
of SHOW statement, 8–375

profiles
displaying, 8–375

PROFILES clause
of SHOW statement, 8–375

Protection
PROTECTION clause

of IMPORT statement, 8–19
REVOKE statement, 8–135

PROTECTION clause
of IMPORT statement, 8–19

Q
Query

specifying, 8–192
QUERY CONFIRM clause

of SHOW statement, 8–376
Query cost estimate

showing, 8–376
Query limit

displaying information about, 8–376
QUERY LIMIT clause

of SHOW statement, 8–376
Query naming, 8–43, 8–156, 8–422
Query optimizer, 8–43, 8–156, 8–422
Query outlines

displaying information about, 8–374
QUIT statement, 8–105
Quotation mark

controlling interpretation of
in dynamic SQL, 8–231, 8–311
in interactive SQL, 8–231, 8–311

QUOTING clause
of SET ANSI statement, 8–201

Quoting rules, setting, 8–311

R
Radix point

SHOW RADIX POINT statement, 8–376
RADIX POINT clause of SET statement, 8–175
RDB$CATALOG default catalog, 8–207
RDB$DBHANDLE default alias

in REVOKE statement, 8–132

Index–14

Read/write transaction, 8–334, 8–407
READ lock type, 8–333
Read-only transaction, 8–333, 8–407
Read-only transaction mode

disabled, 8–343
restrictions, 8–343

Record definitions
including in programs, 8–32
retrieving from repository, 8–31

RECOVERY JOURNAL clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

Re-creating repository definitions, 8–56
RELEASE statement, 8–106

restriction, 8–107
statement-name, 8–106

RENAME statement, 8–110
Renaming

structure name from repository, 8–31
REPEAT control statement

beginning label, 8–119
of compound statement, 8–119

Repository
creating data definitions

using SQL, 8–68
definitions

interpreting CHAR fields in C, 8–32
re-creating with INTEGRATE statement,

8–56
updating with INTEGRATE statement,

8–56
modifying field definitions

using SQL, 8–71
path names

displaying current directory, 8–370
in INCLUDE statement, 8–32
in INTEGRATE statement, 8–57
in SHOW DICTIONARY statement,

8–370
record definitions, 8–31, 8–32
updating using SQL, 8–63, 8–70

Reserved word
See also Keyword
as user-supplied names, 8–368

Reserved word (cont’d)
flagging use of, 8–201

RESERVE n CACHE SLOTS clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

RESERVE n JOURNALS clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

RESERVE n STORAGE AREAS clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

RESERVING clause in SET TRANSACTION
statement, 8–334

RESTRICTED ACCESS clause
of IMPORT statement, 8–24

Restricted access to database, 8–24
Restriction

AS clause
of INCLUDE statement, 8–31, 8–32

declared cursors, 8–107
executing prepared statements, 8–107
INTEGRATE statement, 8–59
prepared statements, 8–107
RELEASE statement, 8–107
ROWNUM keyword, 8–240
standard output, 8–179
SYS$OUTPUT, 8–104
TRUNCATE TABLE statement, 8–417

Result tables, 8–151, 8–164
intermediate, 8–151

RETURN control statement, 8–122
RETURNING clause

of UPDATE statement, 8–423
RETURNING DBKEY clause, 8–47

of UPDATE statement, 8–423
REVOKE statement, 8–125

See also GRANT statement
AFTER clause, 8–128
ANSI/ISO-style, 8–135
database access, 8–125, 8–135
external routine access, 8–135
general usage notes, 8–124

Index–15

REVOKE statement (cont’d)
module access, 8–135
ON COLUMN clause, 8–131, 8–139
ON DATABASE clause, 8–131, 8–139
ON FUNCTION clause, 8–131, 8–139
ON MODULE clause, 8–131, 8–139
ON PROCEDURE clause, 8–131, 8–139
ON SEQUENCE clause, 8–131, 8–139
ON TABLE clause, 8–131, 8–139
POSITION clause, 8–128
RDB$DBHANDLE default alias, 8–132
roles, 8–144
table access, 8–125, 8–135

Roles
REVOKE statement, 8–144

ROLLBACK statement, 8–146, 8–148
Row cache

displaying information about, 8–368
dropping, 8–17

ROW CACHE clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

ROWID SCOPE clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

Row locking for updates, 8–331
ROWNUM keyword

restriction, 8–240

S
SAMPLED SELECTIVITY transaction option

SET OPTIMIZATION LEVEL statement,
8–305

Schema
displaying information about, 8–376
selecting, 8–315
SHOW SCHEMAS statement, 8–376

Schema expression, 8–316
SEGMENTED STRING clause

of IMPORT statement
See CREATE DATABASE statement in

Volume 2

SELECT LIST clause
of PREPARE statement, 8–94

Select lists, 8–92
information in SQLDA, 8–95
PREPARE statement, 8–94

SELECT statement, 8–151, 8–164
FOR UPDATE clause, 8–155
general form, 8–151
select expression, 8–151, 8–164
singleton select, 8–164

Session, 8–223
See also Module

SET ALIAS statement, 8–189
SET ALL CONSTRAINTS statement, 8–197

changing SQL parameters, 8–197
SET ANSI statement, 8–200

DATE clause, 8–201
IDENTIFIERS clause, 8–201
QUOTING clause, 8–201

SET assignment control statement
of compound statement, 8–221

SET AUTOMATIC TRANSLATION statement,
8–203

SET CATALOG statement, 8–206
SET CHARACTER LENGTH statement, 8–211

CHARACTERS option, 8–212
OCTETS option, 8–211

SET CONNECT statement, 8–217
SET Control statement, 8–221
SET DEFAULT CHARACTER SET statement,

8–223
SET DEFAULT DATE FORMAT statement,

8–228
SET DIALECT statement, 8–231

MIA, 8–236
ORACLE LEVEL1, 8–233
ORACLE LEVEL2, 8–235
SQL89, 8–236
SQL99, 8–237, 8–238
SQLV40, 8–238

SET DISPLAY CHARACTER SET statement,
8–253

SET FEEDBACK statement, 8–247

Index–16

SET FLAGS statement, 8–256
SET HEADING statement, 8–247
SET HOLD CURSORS statement, 8–289
SET IDENTIFIER CHARACTER SET statement,

8–292
SET KEYWORD RULES statement, 8–294
SET LITERAL CHARACTER SET statement,

8–297
SET NAMES statement, 8–299
SET NATIONAL CHARACTER SET statement,

8–302
SET NULL statement, 8–246
SET OPTIMIZATION LEVEL statement, 8–304

AGGRESSIVE SELECTIVITY option, 8–305
DEFAULT option, 8–305
FAST FIRST option, 8–305
SAMPLED SELECTIVITY option, 8–305
TOTAL TIME option, 8–305

SET QUERY statement, 8–192
SET QUOTING RULES statement, 8–311
SET SCHEMA statement, 8–315
SET SESSION AUTHORIZATION statement,

8–319
host-variable clause, 8–319
USER clause, 8–319
USING clause

of USER clause, 8–319
SET SQLDA statement, 8–321

environment, 8–321
in Dynamic SQL, 8–321

SET statement, 8–167
See also SET ALIAS statement
See also SET ALL CONSTRAINTS statement
See also SET ANSI statement
See also SET CATALOG statement
See also SET CHARACTER LENGTH

statement
See also SET COMPOUND TRANSACTIONS

statement
See also SET CONNECT statement
See also SET Control statement
See also SET DEFAULT CHARACTER SET

statement
See also SET DEFAULT CONSTRAINT

MODE statement

SET statement (cont’d)
See also SET DEFAULT DATE FORMAT

statement
See also SET DIALECT statement
See also SET DISPLAY CHARACTER SET

statement
See also SET DISPLAY statement
See also SET FLAGS statement
See also SET HOLD CURSORS statement
See also SET IDENTIFIER CHARACTER SET

statement
See also SET KEYWORD RULES statement
See also SET LITERAL CHARACTER SET

statement
See also SET NAMES statement
See also SET NATIONAL CHARACTER SET

statement
See also SET OPTIMIZATION LEVEL

statement
See also SET QUIET COMMIT statement
See also SET QUOTING RULES statement
See also SET SCHEMA statement
See also SET TRANSACTION statement
See also SET VIEW UPDATE RULES

statement
ANSI IDENTIFIERS clause, 8–202
changing constraint evaluation mode, 8–226
changing SQL parameters, 8–167
CONTINUE CHARACTER clause, 8–169
CURRENCY SIGN clause, 8–169, 8–181
DATE FORMAT clause, 8–170

EDIT STRING overriding, 8–178
DEFAULT CONSTRAINT MODE clause,

8–225, 8–226
DICTIONARY clause, 8–170
DIGIT SEPARATOR clause, 8–171
ECHO clause, 8–176
EDIT clause, 8–171
EXECUTE clause, 8–171
FEEDBACK clause, 8–172, 8–176
FLAGGER clause, 8–172, 8–185
flagging nonstandard syntax, 8–185
HEADING clause, 8–176
internationalization features, 8–181
LANGUAGE clause, 8–173, 8–181

Index–17

SET statement (cont’d)
LINE LENGTH clause, 8–174
LINESIZE clause, 8–174
LOGFILE clause, 8–174
logical names for international SET features,

8–178
logical names used in, 8–178
NOLOGFILE clause, 8–174
NOOUTPUT clause, 8–174
NOVERIFY clause, 8–177
NULL clause, 8–176
obsolete syntax warnings, 8–186
OUTPUT clause, 8–174
PAGE LENGTH clause, 8–175
PAGESIZE clause, 8–175
RADIX POINT clause, 8–175
reserved words warnings, 8–202
TIMING clause, 8–176
VERIFY clause, 8–177
WARNING clause, 8–177, 8–186

SET TRANSACTION statement, 8–326
aliases, 8–332
BATCH UPDATE mode, 8–328
comparison of

locking, 8–331
share modes, 8–330

constraint evaluation, 8–330
contrasted with DECLARE TRANSACTION

statement, 8–326
DATA DEFINITION lock type, 8–333
defaults, 8–337, 8–338
environment, 8–327
EVALUATING clause, 8–330
EXCLUSIVE share mode, 8–330
format, 8–327
for multiple databases, 8–332
in embedded SQL, 8–327
in interactive SQL, 8–327
lock types, 8–333
NOWAIT wait mode, 8–335
ON clause, 8–332
PARTITION, 8–333
PROTECTED share mode, 8–330
READ lock type, 8–333
READ ONLY mode, 8–333, 8–407

SET TRANSACTION statement
READ ONLY mode (cont’d)

disabled, 8–343
restrictions, 8–343

READ WRITE mode, 8–334, 8–407
RESERVING options, 8–334
setting isolation level in, 8–331, 8–406
SHARED share mode, 8–330
SNAPSHOT mode, 8–333, 8–407

disabled, 8–343
restrictions, 8–343

timeout value in WAIT mode, 8–334
USING clause, 8–335
wait modes, 8–335
WAIT wait mode, 8–335
WRITE lock type, 8–333

SET VIEW UPDATE RULES statement, 8–353
SHARED MEMORY clause

of IMPORT statement
See CREATE DATABASE statement in

Volume 2
Share modes in SET TRANSACTION statement,

8–330
SHOW statement, 8–357

ALIASES clause, 8–367
ANSI DATE MODE clause, 8–368
ANSI IDENTIFIERS MODE clause, 8–368
ANSI QUOTING MODE clause, 8–368
AUTOMATIC TRANSLATION clause, 8–368
CACHE clause, 8–368
CATALOGS clause, 8–369
CHARACTER SETS clause, 8–369
COLLATING SEQUENCE clause, 8–369
CONNECTIONS clause, 8–369
CONSTRAINT MODE mode, 8–369
CONTINUE CHARACTER clause, 8–369
CURRENCY SIGN clause, 8–370
CURSORS clause, 8–370
DATABASES clause, 8–370
DATE FORMAT clause, 8–370
DICTIONARY clause, 8–370
DIGIT SEPARATOR clause, 8–370
DISPLAY clause, 8–371, 8–381
DOMAINS clause, 8–371
EXECUTION MODE clause, 8–371

Index–18

SHOW statement (cont’d)
FLAGGER MODE clause, 8–371
FLAGS clause, 8–371
FUNCTIONS clause, 8–371
HOLD CURSORS MODE clause, 8–372
INDEXES clause, 8–372
JOURNALS clause, 8–372
LANGUAGE clause, 8–373
MODULES clause, 8–373
OUTLINES clause, 8–374
PRIVILEGES clause, 8–374
PROCEDURES clause, 8–375
PROFILES clause, 8–360, 8–375
PROTECTION clause, 8–374
QUERY CONFIRM clause, 8–376
QUERY LIMIT clause, 8–376
RADIX POINT clause, 8–376
ROLES clause, 8–376
SCHEMAS clause, 8–376
SEQUENCES clause, 8–376
SQLCA clause, 8–376
STATISTICS clause, 8–377
STORAGE AREAS clause, 8–377
STORAGE MAPS clause, 8–378
SYNONYMS clause, 8–378, 8–382
TABLES clause, 8–379
TRANSACTION clause, 8–379
TRIGGERS clause, 8–379, 8–380
USERS clause, 8–380
USERS GRANTING clause, 8–380
USERS WITH clause, 8–380
VARIABLES clause, 8–380
VERSIONS clause, 8–380
VIEWS clause, 8–380
WARNING MODE clause, 8–381

SIGNAL control statement, 8–398
Simple statements, 8–403
SINGLETON SELECT statement

INTO clause, 8–166
SNAPSHOT ALLOCATION clause

of IMPORT statement
See CREATE DATABASE statement in

Volume 2

SNAPSHOT CHECKSUM CALCULATION
clause

of IMPORT statement
See CREATE DATABASE statement in

Volume 2
SNAPSHOT DISABLED clause

of CREATE DATABASE statement
effect on READ ONLY, 8–343

of IMPORT statement
See CREATE DATABASE statement in

Volume 2
SNAPSHOT ENABLED clause

of IMPORT statement
See CREATE DATABASE statement in

Volume 2
SNAPSHOT EXTENT clause

of IMPORT statement
See CREATE DATABASE statement in

Volume 2
SNAPSHOT FILENAME clause

of IMPORT statement
See CREATE DATABASE statement in

Volume 2
Snapshot transaction, 8–333, 8–407
Snapshot transaction mode

disabled, 8–343
restrictions, 8–343

Software version, displaying with SHOW
VERSION, 8–380

SQL89
dialect setting, 8–236

SQL92
dialect setting, 8–237

SQL99
dialect setting, 8–238

SQLCA
displaying contents of, 8–376
explicit declaration required, 8–34
in INCLUDE statement, 8–33

EXTERNAL keyword, 8–32
in PREPARE statement, 8–96

SQLDA, 8–86
in INCLUDE statement, 8–34
in PREPARE statement, 8–92, 8–94
parameter markers, 8–95

Index–19

SQLDA (cont’d)
select lists, 8–92

SQLDA2
in INCLUDE statement, 8–34

SQLERROR argument of WHENEVER
statement, 8–428

SQL module language
character set, 8–253
default character set, 8–223
identifier character set, 8–292
literal character set, 8–297
names character set, 8–299
national character set, 8–302

SQL precompiler
CHAR interpretation, 8–32
embedding SQL statements in programs,

8–35
where embedded statements allowed, 8–35

SQLV40
dialect setting, 8–238

SQLWARNING argument of WHENEVER
statement, 8–428

START TRANSACTION statement, 8–405
DEFAULT clause, 8–405
environment, 8–405
format, 8–405
in embedded SQL, 8–405
in interactive SQL, 8–405

Statement names
in PREPARE statement, 8–94
in RELEASE statement, 8–106

Statement string
in PREPARE, 8–93
length, 8–93

Statistics
displaying information about, 8–377

STATISTICS COLLECTION clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

Stopping interactive sessions
with QUIT, 8–105

Stopping transactions, 8–146

Storage area
displaying information about, 8–377
DROP STORAGE AREA clause of IMPORT

statement, 8–17
STORAGE AREAS statement clause, 8–377

Storage area parameters
of IMPORT statement, 8–19

Storage maps
displaying information about, 8–378
SHOW STORAGE MAPS statement, 8–378

Stored function
displaying, 8–373
displaying information about, 8–371
RETURN control statement, 8–122

Stored module privileges
displaying information about, 8–374

Stored procedure
displaying, 8–373, 8–375

Storing data, 8–39
Subprograms, restrictions on multimodule files,

8–35
synonyms

displaying, 8–378
SYNONYMS clause

of SHOW statement, 8–378
SYS$CURRENCY logical name, 8–170
SYS$DIGIT_SEP logical name, 8–171
SYS$LANGUAGE logical name, 8–173
SYS$RADIX_POINT logical name, 8–175
System-defined identifiers, 8–132
SYSTEM INDEX COMPRESSION clause

of IMPORT statement
See CREATE DATABASE statement in

Volume 2

T
Table

denying access, 8–125, 8–135
displaying information about, 8–379
including repository definitions of, 8–32
privileges, 8–125, 8–135
result, 8–151, 8–164
specifying

in REVOKE statement, 8–131, 8–139

Index–20

Table (cont’d)
TRUNCATE TABLE statement, 8–416
truncating, 8–416

Table cursor
inserting row into, 8–47

Table privileges
displaying information about, 8–374

TABLES clause
of SHOW statement, 8–379

THRESHOLD clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

THRESHOLDS clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

Time formats
SET DATE FORMAT statement, 8–170
SHOW DATE FORMAT statement, 8–370

TIMING clause
of SET statement, 8–176

TOTAL TIME option
SET OPTIMIZATION LEVEL statement,

8–305
TRACE clause

of IMPORT statement, 8–20
TRACE control statement

of compound statement, 8–410
Transactions

aliases, 8–332
BATCH UPDATE mode, 8–328
constraint evaluation, 8–330, 8–369
DATA DEFINITION lock type

in LOCK TABLE statement, 8–78
in SET TRANSACTION statement,

8–333
defaults, 8–338
displaying information about, 8–379
environment, 8–327, 8–405
EVALUATING clause in SET TRANSACTION

statement, 8–330
EXCLUSIVE share mode, 8–330
format for specifying, 8–327, 8–405
for multiple databases, 8–332

Transactions (cont’d)
in

embedded SQL, 8–327, 8–405
interactive SQL, 8–327, 8–405

locking comparison, 8–331
lock types, 8–333
NOWAIT wait mode, 8–335
ON clause of SET TRANSACTION statement,

8–332
PROTECTED share mode, 8–330
READ lock type

in LOCK TABLE statement, 8–78
in SET TRANSACTION statement,

8–333
read-only

always SERIALIZABLE, 8–340
READ ONLY mode, 8–333, 8–407

disabled, 8–343
restrictions, 8–343

READ WRITE mode, 8–334
in START TRANSACTION statement,

8–407
RESERVING clause in SET TRANSACTION

statement, 8–334
ROLLBACK statement, 8–146 to 8–148
setting isolation levels, 8–331, 8–406
setting lock timeout interval, 8–334
SET TRANSACTION statement, 8–326
SHARED share mode, 8–330
share modes comparison, 8–330
SNAPSHOT mode, 8–333, 8–407

disabled, 8–343
restrictions, 8–343

START TRANSACTION statement, 8–405
USING clause of SET TRANSACTION

statement, 8–335
wait modes, 8–335
WAIT wait mode, 8–335
WRITE lock type

in LOCK TABLE statement, 8–78
in SET TRANSACTION statement,

8–333
triggers

displaying, 8–380

Index–21

Triggers
displaying information about, 8–379

TRIGGERS clause
of SHOW statement, 8–380

TRUNCATE TABLE statement, 8–416
restriction, 8–417

Truncating
tables, 8–416

U
UNDECLARE variable statement, 8–419
UPDATE statement, 8–420

INTO clause, 8–422
RETURNING clause, 8–423
RETURNING DBKEY clause, 8–423

Updating
repository definitions, 8–56
repository using SQL, 8–63, 8–70

User authentication
IMPORT statement, 8–19

USER clause
of IMPORT statement, 8–20

User identifier, 8–125, 8–135
in REVOKE statement, 8–132, 8–138, 8–139

Users granting privileges
displaying information about, 8–380

Users receiving privileges
displaying information about, 8–380

User-supplied name
dynamic SQL statements, 8–92, 8–106
statement names, 8–92, 8–106

USING clause
of USER clause

of IMPORT statement, 8–21

V
Variable

displaying information about, 8–380
specifying dynamic statements, 8–93
SQLCA, 8–31
SQLDA, 8–31

Variable declaration
in dynamic SQL, 8–419
in interactive SQL, 8–419

Version, displaying with SHOW VERSION,
8–380

View
displaying information about, 8–380
update of

controlling interpretation of
in dynamic SQL, 8–231, 8–353
in interactive SQL, 8–231, 8–353

View privileges
displaying information about, 8–374

View update rules
setting, 8–353

W
WAIT clause

of IMPORT statement
See CREATE DATABASE statement in

Volume 2
WAIT mode in SET TRANSACTION statement,

8–335
WARNING clause

of SET statement, 8–177
WHENEVER statement, 8–427

CONTINUE argument, 8–427
GOTO argument, 8–427
NOT FOUND argument, 8–428
SQLERROR argument, 8–428
SQLWARNING argument, 8–428

WHILE control statement
beginning label, 8–430
of compound statement, 8–430

WORKLOAD COLLECTION clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

WRITE lock type, 8–333
WRITE ONCE clause

of IMPORT statement
See CREATE DATABASE statement in

Volume 2

Index–22

